
1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3006535, IEEE
Transactions on Mobile Computing

1

Multi-hop Deflection Routing Algorithm Based
on Reinforcement Learning for

Energy-Harvesting Nanonetworks
Chao-Chao Wang, Member, IEEE, Xin-Wei Yao, Member, IEEE, Wan-Liang Wang,

and Josep Miquel Jornet, Member, IEEE

Abstract—Nanonetworks are composed of interacting nano-nodes, whose size ranges from several hundred cubic nanometers to
several cubic micrometers. The extremely constrained computational resources of nano-nodes, the fluctuations in their energy caused
by energy harvesting processes, and their very limited transmission range at Terahertz (THz)-band frequencies (0.1-10 THz), make the
design of routing protocols in nanonetworks very challenging. A multi-hop deflection routing algorithm based on reinforcement learning
(MDR-RL) is proposed in this paper to dynamically and efficiently explore the routing paths during packet transmissions. Firstly, new
routing and deflection tables are implemented in nano-nodes, so that nano-nodes can deflect packets to other neighbors when route
entries in the routing table are invalid. Secondly, one forward updating scheme and two feedback updating schemes based on
reinforcement learning are designed to update the tables, namely, on-policy and off-policy updating schemes. Finally, extensive
simulations in networks simulator-3 are conducted to analyze the performance of MDR-RL using different updating policies, as well as
to compare the performance with other machine learning routing algorithms based on Neural Networks and Decision Tree. The results
show that the MDR-RL can increase the packet delivery ratio and number of delivered packets, and can decrease the packet average
hop count.

Index Terms—Nanonetworks, deflection routing, reinforcement learning, energy harvesting, THz communications
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1 INTRODUCTION

NANOTECHNOLOGY enables the development of nano-
devices, whose size ranges from a few hundred cubic

nanometers to a few cubic micrometers. At this scale, the
physical properties of new nanomaterials and nanostruc-
tures lead to new capabilities and functionalities. For in-
stance, nano-bio-sensors can be utilized to detect biological
markers directly in the blood or pathogens in surfaces or in
the air with unprecedented accuracy [1], [2]. Nevertheless,
due to their reduced size, nano-nodes have very limited
computational and memory resources. However, by means
of communications, nano-nodes in nanonetworks can over-
come their limitations and enable new collaborative applica-
tions [3]. Nanonetworks can be utilized in biomedical areas
(e.g., advanced health monitoring system [4] and drug deliv-
ery system [5]), environmental areas (e.g., agriculture plant
monitoring system [6] and pesticide control system [7])
and security areas (e.g., food safety control system [8] and
chemical attack prevention [9]).

There are two main alternative communication technolo-
gies for nanonetworks, namely, molecular communication
and electromagnetic (EM) communication. In this paper, we
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concentrate on EM-based nanonetworks, where nano-nodes
communicate with each other through EM radiation. The
very small size of nano-nodes and, thus, of their transceivers
and antennas, imposes the utilization of ultra-high trans-
mission frequencies. Among others, the implementation of
graphene-based plasmonic transceivers and antennas en-
ables the communication of nano-nodes at Terahertz (THz)-
band frequencies, i.e., from 100 GHz to 10 THz [10]. In
addition, novel nanomaterials and nanofabrication tech-
niques provide new methods to produce electronic nano-
components, including nano-batteries, nano-processors, and
nano-memorizers [11], [12]. All the above are driving the
EM-based nanonetworks to become true.

In the past few years, several accomplishments for
nanonetworks have been achieved in the areas of nano-node
design [13], [14], [15], physical [16], [17], [18] and link-layer
protocols design [19], [20]. However, only a few papers have
studied the routing algorithms. There are several challenges
in the design of routing protocols for nanonetworks. In
particular,

• The limited transmission range. On the one hand,
the THz band suffers from high propagation losses
due to both the low effective area of THz nano-
antennas as well as molecular absorption [21]. On
the other hand, the power of the transmitted signals
is limited both by the maximum output power of
nano-transceivers and the maximum peak power
that nano-batteries can hold [22], [23]. Therefore, the
transmission range of nano-nodes is very short and,
thus, multi-hop links are needed to deliver packets
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from sources to destinations, when the distance be-
tween them is beyond their transmission ranges.

• The energy fluctuations of nano-nodes. To extend the
lifetime of nanonetworks, energy harvesting systems
(e.g., triboelectric [24] and piezoelectric [25] nano-
generators) have been proposed to be implemented
in nano-nodes. Therefore, the energy of nano-nodes
fluctuates non-monotonically in time, which could
result in transmission failures. Hence, the routing al-
gorithm needs to update the routing strategies when
the energy capacity of a nano-node changes.

• The extremely limited onboard memory/buffer.
Nano-nodes might be able to store only one
packet due to the limited onboard memory/buffer.
Therefore, when a nano-node has a packet to be
sent/forwarded, it cannot process packets from other
nano-nodes, which leads to immediate packet loss.
Hence, the packet store and forward policy in tra-
ditional Wireless Sensor Networks (WSNs) might be
not suitable for nanonetworks.

As a result of the above three challenges, traditional
routing algorithms in wireless networks are not suitable for
nanonetworks. In this paper, we propose a multi-hop de-
flection routing algorithm based on reinforcement learning
(MDR-RL), with the following properties:

1) To address the packet loss when the next-hop nano-
node in the routing table is not available (due to
buffer or energy outages), a deflection table is im-
plemented to direct the packet through second-best
routes and prevent packet drop at the buffer.

2) An energy prediction scheme is established to en-
hance the deflection decision-making process.

3) One feedforward and two feedback update schemes
are designed with several nano-node attributes, in-
cluding deflection ratio, loss probability, hop count
to destination and energy status.

We analytically and numerically investigate the perfor-
mance of the proposed protocol in terms of exploration
ability, convergence and overhead. Moreover, extensive sim-
ulations in network simulator-3 (ns-3) are conducted to
compare our proposed routing algorithm with two other
learning-based protocols, namely, Neural Networks Routing
(NNR) proposed in [26] and Decision Tree Routing (DTR)
proposed in [27]. The results show that our proposed MDR-
RL algorithm with on-policy updating scheme has the best
performance comprehensively.

The remainder of this paper is organized as follows.
In Sec. 2, the related work is introduced. The updating
processes of MDR-RL are presented in Sec. 3, including
one feedforward and two feedback updating schemes. In
Sec. 4, the detailed operations of MDR-RL are presented.
Simulations and analyses are provided in Sec. 5. Finally, we
conclude the paper in Sec. 6.

2 RELATED WORK

In this section, we describe and discuss existing routing
algorithms for nanonetworks as well as deflection routing
algorithms developed for traditional networks.

2.1 Existing Routing Algorithms in Nanonetworks
In the related literature of nanonetworks, a few contri-
butions have been made to develop appropriate routing
algorithms. The majority of the existing solutions are based
on the flooding algorithm. In such protocols [28], a nano-
node broadcasts its packet, all other nano-nodes receive
the packet and help to forward it to the next-hop nano-
node (ultimately, if a path between the source node and
the destination node exists, the flooding algorithm will also
follow that, among all the other paths). Although flood-
based routing protocols are simple and robust, it requires
many energy and memory resources and, thus, reduces
the performance of nanonetwork. Recently, a few protocols
have been proposed to improve the energy efficiency of
flooding-based strategies by restricting the flooding area,
including a COordinate ROuting Algorithm for 2D ad-hoc
nanonetwork proposed in [29], the DEployable ROUting
system (DEROUS) proposed in [30], and the Stateless Linear
Routing (SLR) proposed in [31].

While these are steps in the right direction, the above
three routing algorithms are all flood-based, which lead to
high energy consumption, and a special network structure
to assign the coordinates. Additionally, energy and memory
issues are not considered in these routing algorithms.

2.2 Deflection Routing in Other Networks
Despite being fundamentally different, optical burst switch-
ing (OBS) networks [32], [33], [34] and electromagnetic
nanonetworks share one aspect in common, namely, the
very limited memory or bufferless operation [35]. In OBS, as
opposed to the traditional routing policies based on storing
a packet and forwarding to the best route when available,
deflection routing has been proposed. Deflection routing
is a rerouting technology that can eliminate heavy data
traffic and avoid packet buffering when network packets
competition happens and nodes possess little to no buffer. In
this case, the packets are deflected away from the main path
by the routing algorithm rather than discarded. A combined
probabilistic deflection and retransmission scheme is pre-
sented in [36] for buffer-less OBS networks. In the algorithm,
when more than two bursts come to one node, only one of
them can choose the shortest port, however, the other bursts
choose other idle ports with a probability.

The deflection routing algorithm also has been used
in on-chip communication networks. In [37], an energy-
efficient deflection routing algorithm is proposed, in which
a multi-channel network interface and a novel deflection
routing based on the turn model are designed. The pro-
posed algorithm cannot only improve the packet delivery
probability, but also reduces the hardware cost and energy
consumption.

In nanonetworks, due to the energy and buffer con-
straints, the packets could be easily dropped when conges-
tions occur. Hence, deflection routing can be a viable routing
solution in nanonetworks. However, due to the significant
differences between OBS networks and energy-harvesting
nanonetworks, the deflection routing algorithms should be
redesigned for nanonetworks. Especially, the dynamic of
traffic load and fluctuations of energy capacity of nano-
nodes should be considered.
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Fig. 1. The framing of reinforcement learning.

2.3 Reinforcement Learning
Reinforcement learning is a kind of machine learning tech-
nique, which emphasizes how software agents act based on
the environment to maximize the expected benefits. Fig. 1
presents a typical scenario of reinforcement learning. The
agent takes actions, and the environment takes the status of
the agent and its action as inputs, and returns the reward
and state as outputs. The reward refers to the feedback that
the algorithm uses to measure the success or failure of the
agent’s action. Then, the agent can update its parameters by
the reward and new state so that better decisions become
more likely to be made in the future [38]. Besides, the value
function is also a key component of RL systems, which
estimates “how good” it is to be in a given state.

In [39], a state-action-reward-state-action (Sarsa) routing
algorithm combined with a fuzzy logic system was pro-
posed for mobile ad-hoc networks. The residual energy
and energy drain rate of nodes are utilized to update
the routing table. To address the local optimum issue, a
selection probability scheme was introduced, in which the
best routing path has the highest selection probability, while
the routing path with low probability can still be selected.
Nevertheless, the routing algorithm proposed in [39] is
implemented based on the Ad hoc On-Demand Distance
Vector Routing (AODV) protocol. Therefore, it is hard to be
realized in nanonetworks. Moreover, the traffic load, hop
count and packet loss probability are not considered in [39],
which cannot be neglected in nanonetworks.

For our early study, a deflection routing algorithm based
on Q-learning for nanonetworks, which used a forward up-
dating scheme to update the routing and deflection tables,
can be found in [40]. As the best of our knowledge, this is
the first time that RL based deflection routing is proposed
for nanonetworks to overcome memory issues.

3 THE UPDATING PROCESSES OF MDR-RL
The main objective of MDR-RL is to adaptively explore
appropriate routing paths to transmit packets by taking into
account the dynamics of nanonetworks. In this section, the
details of the updating processes of MDR-RL are presented.
First, the structure of the deflection and routing tables,
the deflection scheme and the energy prediction scheme
are presented. Then, one forward updating policy and two
feedback updating policies are presented. The associated
notations in this section are listed in Table 1.

3.1 Tables Structures
In the MDR-RL, a routing table is designed to route packets,
and a deflection table is established to deflect packets when

TABLE 1
Notations of the updating processes of MDR-RL in Sec. 3

Symbols (examples) Description
3, G, H, I, B Nano-nodes
&I1

(
31, H 9

)
Q-value from I1 to destination 31 via H 9

'I1

(
31, H 9

) Recovery rate from I1
to destination 3 via H 9

�I1

(
31, H 9

)
Hop Count from I1 to destination 31 via H 9

)I1

(
31, H 9

)
Time when this route entry is updated

�<0G Maximum battery capacity of nano-node
�
I1′
H 9 Predicated energy status of H 9 in I1

ΔCI1

(
H 9

) Time duration between
the time when the route entry
was updated and current time

C2 Current time
(ℎH 9 Energy harvesting rate of H 9
(2H 9 Energy consuming rate of H 9
l Predicted energy

AH1 (31, G1) Reward information from H1

?
H1
34 5

Deflection ratio of H1

?
H1
;>BB

Packet loss probability of H1

#
H1
34 5

Number of deflection times of H1

#
H1
34 5

Number of lost packets of H1

#
H1
CA0=B Number of transmitted packets of H1

�
H1
4=4A6H Consumed energy percentage of H1

�
H1
2 Residual energy of H1

U Learning rate
V Recovery coefficient
W Decay coefficient
q Difference between reward and Q-value

routing paths in the routing table are invalid due to energy
or memory issues. The tables are empty initially, and are
built up during transmissions. Both can be updated based
on the updating process of MDR-RL, which is described in
Secs. 3.4 and 3.5.

We consider an arbitrary nanonetwork with several
nano-nodes (see in Fig. 2). Each nano-node implements the
MDR-RL, and has both routing and deflection tables. When
a nano-node generates or receives a packet, it investigates
the routing table to find the next-hop nano-node. For a des-
tination, there exists only one route entry. The composition
of each route entry is as follows:

• Destination nano-node ID
• Next-hop nano-node ID
• Q-value to destination nano-node via next-hop nano-

node
• Recovery Rate to destination nano-node via next-hop

nano-node
• Hop Count to destination nano-node
• Time when this route entry is updated
• Route Valid Flag
• Lifetime

where Q-value refers to the weight of the corresponding
routing path. The higher the Q-value is, the more resources
(energy, buffer, and hops) are consumed by the routing path,
i.e., the Q-value is an indicator of the path quality. The
Recovery Rate is applied to estimate the rate that the nano-
node recovers to its original status. For instance, nano-nodes
without energy can recover by harvesting energy from the
environment. The Route Valid Flag identifies whether the
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Fig. 2. An arbitrary nanonetwork

route entry is valid or not. It is enabled when the nano-node
receives a data packet or ACKnowledgment (ACK) from the
corresponding nano-node, and is disabled when the nano-
node receives a Negative ACKnowledgment (NACK) or
meets a timeout. The Lifetime refers to how long the route
entries survive in the routing table. Initially, the routing
table is empty, and route entries are added and updated
during packet transmissions period.

Because the size of the nano-nodes is very small, their
energy capacity and memory/buffer are extremely limited.
Therefore, route entries may become invalid when one of
the following three things happens: (i) the next-hop nano-
node in the routing table runs out of energy; (ii) the next-
hop nano-node receives or generates packets to be for-
warded/sent and, thus, become busy communicating with
another nano-node, and has no more idle memory/buffer
to store new packets; (iii) errors occur during the trans-
missions, which may be caused by channel congestion,
modulation errors, and so on. All the above problems lead to
the failure of packet transmission. To address these issues,
the deflection table is introduced so that the transmitting
nano-nodes can deflect packets to other nano-nodes if the
next-hop nano-node in the routing table is invalid. In the
proposed deflection table of a nano-node, every entry is
indexed by destinations and its neighbors. Hence, there may
exist multi deflection route entries for one destination. For
instance, as shown in Fig. 2, if I1 wants to send a packet
to 31 and the next-hop nano-node in the routing table is
invalid, it has several alternative nano-nodes (from H1 to H 9 )
to deflect the packet. Continuing with the example of the
arbitrary nano-node I1, the composition of each deflection
route entry is as follows:

• &I1

(
31, H 9

)
- Q-value from I1 to destination 31 via H 9

• 'I1

(
31, H 9

)
- Recovery rate from I1 to destination 3

via H 9
• �I1

(
31, H 9

)
- Hop Count from I1 to destination 31 via

H 9
• )I1

(
31, H 9

)
- Time when this route entry is updated

Consistently with the routing table, the deflection table
is empty initially, and is updated during the packets trans-
missions period.

3.2 Deflection Scheme
Consider that I1 receives a packet from B1, and the desti-
nation is 31 (red line in Fig. 2). First of all, I1 searches for
the next-hop nano-node in the routing table, if the next-
hop nano-node is invalid, I1 chooses a neighboring nano-
node H< (< ∈ (1, 2, · · · , 9)) in the deflection routing table to
forward the packet, determined by

< = arg min
(
&I1

(
31, H 9

)
+

ΔCI1

(
H 9

)
'I1

(
31, H 9

) (
�max − � I1

H 9

′
))
, (1)

where the function of arg min is to obtain the index of
the next-hop nano-node with minimum Q-value. H 9 is the
set of neighboring nano-nodes of I1, except for the invalid
nano-nodes. 'I1

(
31, H 9

)
is the recovery rate from I1 to the

destination 3 via H 9 . ΔCI1

(
H 9

)
is the time duration between

the time when the route entry was updated and current time
C2 , which can be obtained by:

ΔCI1

(
H 9

)
= C2 − )I1

(
31, H 9

)
, (2)

where �max is the maximum battery capacity of nano-node,
�
I1
H 9

′ is the predicated energy status of H 9 in I1, which we
explain in the following section.

3.3 Energy Prediction Scheme
Due to the very limited battery capacity of nano-nodes, an
energy harvesting nano-system is used to extend the lifetime
of nanonetworks. However, these lead to frequent energy
fluctuations in nano-node (energy is no longer a monoton-
ically decreasing parameter), which can also cause trans-
mission failures. Therefore, an energy prediction scheme is
established to select the next-hop nano-node with maximum
energy to avoid no energy issues. In the MDR-RL, nano-
nodes can share their energy status and energy consump-
tion and harvesting rates during the transmissions. Hence,
continue with the example of I1, it can predict the energy
status of neighboring nano-nodes as:

�
I1
H 9

′
=


�max l > �max(
(ℎH 9 − (

2
H 9

)
ΔCH8 + �

I1
H 9 0 < l < �max

0 l < 0,
(3)

where (ℎH 9 and (2H 9 are the energy harvesting and consump-
tion rate of H 9 , respectively. � I1

H 9 is the energy status of
H 9 recorded in I1 and is updated after last transmission,
l =

(
(ℎH 9 − (

2
H 9

)
ΔCH8 + �

I1
H 9 .

3.4 Forward Updating Scheme
The deflection table is updated when the nano-node receives
a forwarded packet from others. For instance, I1 receives a
packet from H1, whose source is 31 and forwarded through
G1 (blue line in Fig. 2). Since bigger hop count to the
destination, higher deflection ratio and loss probability, and
higher energy consumption of nano-nodes is more likely
to lead to worse routing decisions, we define the reward
function as follows:

AH1 (31, G1) =&H1 (31, G1) ·
(
�H1 (31, G1) + 1

)
·

%
H1
34 5
· %H1

;>BB
· �H1

4=4A6H , (4)
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where &H1 (31, G1) and �H1 (31, G1) are the Q-value and hop
count of the corresponding routing path, respectively. %H1

34 5

is the deflection ratio of H1, and can be expressed as follows:

%
H1
34 5

=
#
H1
34 5

#
H1
CA0=B

, (5)

where # H1
34 5

refers to the time that deflection happens in H1.
#
H1
CA0=B refers to the packet quantity transmitted by H1. %H1

;>BB

is the packet loss probability of H1, given by

%
H1
;>BB

=
#
H1
;>BB

#
H1
CA0=B

, (6)

where #
H1
;>BB

refers to the lost packets quantity. �H1
4=4A6H is

consumed energy percentage of H1, which can be expressed
as

�
H1
4=4A6H =

�max − � H1
2

�max
× 100%, (7)

where � H1
2 is the residual energy percentage of H1.

In this case, when I1 receives a packet from H1, it obtains
the reward information AH1 (31, G1) from the packet header
and updates its Q-value of corresponding deflection route
entry as

&I1 (31, H1) = &I1 (31, H1) + U
(
AH1 (31, G1)
�AI1 (31)

−&I1 (31, H1)
)
,

(8)

where �AI1
(31) represents the hop count from I1 to desti-

nation 31 in the routing table, U (0 < U ≤ 1) represents the
learning rate, i.e., “how much information” a nano-node
learns from the reward of the routing. Then, the recovery
rate 'I1 (31, H1) is updated as follows:

'I1 (31, H1) =
{
'I1 (31, H1) + V q

ΔCI1 (H1) , q < 0
W'I1 (31, H1) , q ≥ 0,

(9)

where V (0 < V ≤ 1) refers to the recovery coefficient, which
adapts to the nano-node energy recovery and network traf-
fic load; and W (0 < W ≤ 1) refers to the decay coefficient, which
adapts to the nano-node energy consumption and increase
of network traffic load; and ΔCI1 (H1) is the time interval
between last table updating time and the current time C2 ;
and q can be expressed as:

q=
AH1 (31, H1)
�AI1 (31)

−&I1 (31, H1) . (10)

Furthermore, �I1 (31, H1) is updated by the hop count
stored in the header of the packet. Finally, the Time of the
router entry is updated to the current time as:

)I1 (31, H1) = C2 . (11)

After updating the deflection table, by comparing &AI1
+

ΔCH1'
A
I1

and &I1 (31, H1) +ΔCH1'I1 (31, H1), a nano-node judges
whether the route entry with the same destination should be
replaced by the deflection entry or not, where &AI1

and 'AI1
are the Q-value and recovery rate of the corresponding route
entry, respectively. If the former is greater, i.e., the path in the
routing table consumes more resources than the deflection
entry, the route entry is replaced by the deflection entry.

3.5 Feedback Updating Scheme
In MDR-RL, a simple ALOHA type Medium Access Control
(MAC) protocol with ACK and NACK is considered to be
operating in all nano-nodes. To make full use of the infor-
mation in the acknowledgment and enhance the learning
and updating processes, two feedback updating schemes
are presented. Consider that I1 sends a packet to 31 by H2.
When H2 receives the packet, it sends an acknowledgment
packet containing the updating information back to I1, then
I1 can use the updating information to update its routing
and deflection tables. In this paper, two different feed-
back updating schemes are introduced: on-policy updating
scheme and off-policy updating scheme. In the on-policy
updating scheme, nano-nodes send back the reward of the
routing path carried out by the routing or deflection scheme.
In the off-policy updating scheme, nano-nodes send back
the reward of the routing path with minimum Q-value
independently of routing and deflection actions.

3.5.1 On-policy Updating Scheme
Consider that I1 sends a packet to 31 by H2, and H2 chooses
G2 as the next-hop nano-node according to the routing or
deflection scheme (red dot-dash line in Fig. 2). Then H2
sends an ACK packet back to I1, which contains the reward
information obtained by:

AH2 (31, G2) =&H2 (31, G2) ·
(
�H2 (31, G2) + 1

)
·

%
H2
34 5
· %H2

;>BB
· �H2

4=4A6H . (12)

After receiving the ACK packet, I1 can use this reward
to update the routing and deflection tables.

3.5.2 Off-policy Updating Scheme
Be different from the on-policy updating scheme, in off-
policy updating scheme, when H2 receives the packet from
I1, it sends back the reward of the routing path with mini-
mum Q-value, which can be decided by:

G: = arg min
(
&H2 (31, G8) + ΔCH2 (G8) 'H2 (31, G8)

)
, (13)

where : is the index of the nano-node with minimum Q-
value (red dash line in Fig. 2). H2 sends the ACK with reward
information back to I1 regardless of whether G: is the next-
hop nano-node chosen according to the routing table or
deflection schemes. Then, the reward can be expressed as

AH2 (31, G: ) =&H2 (31, G: ) ·
(
�H2 (31, G: ) + 1

)
·

%
H2
34 5
· %H2

;>BB
· �H2

4=4A6H . (14)

From the differences between the two feedback updating
schemes, the off-policy updating scheme is more greedy,
which always selects the reward of the routing path with the
minimum Q-value. Instead, the on-policy updating scheme
uses the reward information of the routing path chosen by
the routing or deflection scheme, which helps to transmit
the packet successfully, hence, it is “safer” than off-policy
updating scheme.

4 THE OPERATIONS OF MDR-RL
In this section, the sending/forwarding and receiving op-
erations of MDR-RL are presented in detail, respectively.
Moreover, the exploration, convergence, and overhead of
the algorithm are analyzed.
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4.1 Operations of Sending/Forwarding a Packet

The details of sending/forwarding operations are presented
in Algorithm 1. The operations of sending and forwarding
a packet are similar. When a nano-node generates a packet
itself or receives one from others, it first checks whether the
energy is sufficient or not. If yes, it investigates the routing
table for the next-hop nano-node to the destination. If the
corresponding route entry is not available, the transmitting
nano-node then looks up the deflection table to choose a
deflection path. If there is no available route entry or the cor-
responding route entry to the destination does not exist, the
transmitting nano-node picks one of the neighboring nano-
nodes randomly to send/forward the packet. If there is no
neighboring nano-node, it drops the packet. The algorithm
ends when the nano-node receives an ACK packet from
next-hop nano-node or exceeds the maximum deflection
time. If the algorithm ends due to exceeding the maximum
deflection time, the packet is discarded.

Algorithm 1 Sending/Forwarding operations of MDR-RL
Input: Generate a packet itself or receive a packet from

another nano-node
Send/Forward the packet to the next-hop nano-node :

1: if energy is enough to send the packet then
2: Look up the routing table;
3: if the corresponding route entry in the routing table

to the destination is accessible then
4: Choose the corresponding next-hop nano-node;
5: else if the corresponding route entry in the routing

table to destination is not accessible then
6: while deflection time < maximum deflection time

and ACK packet is not received from the next-hop
do

7: Set the corresponding route entry invalid;
8: if energy is enough to deflect the packet then
9: Look up the deflection table;

10: if deflection entries to the destination exist
then

11: Choose the appropriate deflection nano-
node as the next-hop by the deflection
scheme;

12: else if no deflection entry to the destination
exists then

13: Pick one of the neighboring nano-nodes ran-
domly as the next-hop;

14: end if
15: Update the reward information of the chosen

nano-node into the packet;
16: Send/Forward the packet to the corresponding

next-hop nano-node;
17: if there is no neighboring nano-node then
18: Drop the packet;
19: end if
20: else
21: Wait for a Round-Trip-Time (RTT) and harvest

energy;
22: end if
23: end while
24: end if
25: end if

4.2 Operations of Receiving a Packet

In MDR-RL, a nano-node uses forwarded data packets and
feedback acknowledgment packets to update its routing and
deflection tables. As described in Algorithm 2, if the energy
of a nano-node is not enough to receive a packet, it discards
the packet and tries to send a NACK packet back. When
a nano-node receives a packet sent by another nano-node
successfully, it extracts the update information from the
packet header. When receiving a data packet, a nano-node
checks the source address of the packet as the destination in
the routing and deflection tables. If the source address in the
data packet does not match any route entry in the routing
and deflection tables, it adds the corresponding routing path
to the tables; otherwise, the matched entry is updated by the
reward. When receiving an ACK packet, the corresponding
routing or deflection entry in the tables is updated by the
updating scheme proposed in Sec. 3. For receiving a NACK
packet, the nano-node discards the packet.

4.3 Exploration, Convergence and Overhead Analysis

In this section, the exploration ability, convergence rate
and overhead of the MDR-RL are analyzed. The associated
notations in this section are listed in Table 2.

4.3.1 Exploration ability
The aim of MDR-RL is to explore the appropriate routing
path to transmit packets. However, network traffic load and
energy status of nano-nodes may change by time, hence, the
routing algorithm should be adaptive to the change. In the
MDR-RL, once a nano-node receives forwarded or feedback
packets, it updates the Q-value of the corresponding routing
and deflection paths by taking advantage of the update
information (reward information and basic path informa-
tion) contained in the packets. The reward information is
measured by the Q-value, hop count, the deflection ratio,
loss probability and energy status of nano-nodes of the
corresponding routing path.

In the routing path updating process, three parameters
are utilized to help explore the optimal routing path. The
learning rate decides how much a nano-node learns from the
reward. The recovery and decay coefficients are designed to
adapt to the changes of nano-node energy status and net-
work traffic load. Moreover, two different feedback updat-
ing schemes are designed to address different performance
requirements.

4.3.2 Convergence of the algorithm
In every round of updating of the MDR-RL, the agent ob-
serves the nano-node status B=, and takes action 0=, observes
the subsequent status B=+1, and then obtains the reward A.
Hence, (8) can be abstracted and simplified to the following
equations:

&= (B, 0) =
{
(1−U)&=−1 (B, 0) +UA if B = B= and0 = 0=
&=−1(B,0) otherwise. (15)

The above model follows the rules of the action-reply
process (ARP), which is an artificially controlled Markov
process described in [41]. Hence, according to [41], given
the bounded reward A, learning rate U (0 < U ≤ 1), and
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Algorithm 2 Receiving operations of MDR-RL
Input: Receive a packet from another nano-node

Update the corresponding entry in tables :
1: if energy is enough to receive the packet then
2: Extract the route information from the header;
3: if the receiver is me then
4: if the packet is a data packet then
5: Send back an ACK packet contained with updat-

ing information (Off-policy);
6: if there is no entry in routing and deflection tables

match the source address contained in the packet
header. then

7: if the routing table or deflection table is full
then

8: Delete the oldest route entry;
9: end if

10: Extract the reward information from the
header;

11: Add a new route to the routing table and
deflection table;

12: else
13: Update the routing and deflection tables by the

updating scheme;
14: end if
15: if the destination is me then
16: Process this packet;
17: else
18: Forward the packet by following the forward-

ing operations;
19: Send back an ACK packet contained with

updating information of the next-hop nano-
node chosen by the forwarding operations (On-
policy);

20: end if
21: end if
22: if the packet is an ACK packet then
23: Update the routing and deflection tables;
24: end if
25: if the packet is a NACK packet then
26: Drop the data packet;
27: end if
28: end if
29: else
30: Drop the packet;
31: if energy is enough to send the NACK packet then
32: Send a NACK packet back;
33: end if
34: end if

∞∑
8=1
U=
8 (B, 0) = ∞,

∞∑
8=1

[
U=
8 (B, 0)

]2
< ∞, then &=+1 (B, 0) con-

verges to &∗ (B, 0), i.e.,

&=+1 (B, 0) → &∗= (B, 0) → ∞, ∀B, 0, (16)

with probability 1, where &∗= (B, 0) is optimal action values.
Then, according to the theorem proposed in [42], the

convergence rate of MDR-RL can be obtained by

|&= (B, 0) −&∗ (B, 0) | ≤
�

='
, (17)

TABLE 2
Notations of the exploration, convergence and overhead analysis of

MDR-RL in Sec. 4.3

Symbols (examples) Description
B= Nano-nodes status
0= Actions
0= Actions

&= (B, 0) Action value with status B and action 0
� A suitable constant

? (B, 0) Sampling probability of (B, 0)

?BD2

Probability of transmitting a
packet successfully from one
nano-node to the next-hop

?�0C0 , ?�� 
Probabilities of no error during

data and ACK packets transmission
?2>; Probability of collision

�BD2

Energy consumption of transmitting
a packet successfully from one

nano-node to the next-hop (no error)

�1, �2
Energy consumptions when data and

ACK packets are not received correctly

�)
�0C0

, �'
�0C0

Energy consumption of transmitting
and receiving a data packet

�)
�� 

, �'
�� 

Energy consumption of transmitting
and receiving an ACK packet

��0C0 , ��� The sizes of data and ACK packets

[�0C0 , [�� 
The ratios of symbol “1”
in data and ACK packets

��0C0 , ��� The sizes of data and ACK packets
��0C0 , ��� The sizes of data and ACK packets
�)? , �'? Transmitting and receiving pulse energy

�)A0=B , �'424

Energy consumption of transmitting
and receiving a packet successfully

from one nano-node to the next-hop
(with errors)

and

|&= (B, 0) −&∗ (B, 0) | ≤ �
√

log log =
=

, (18)

where � > 0 is a suitable constant, ' = ?min/?max, with
?min = min(B,0) ? (B, 0) and ?max = max(B,0) ? (B, 0), where
? (B, 0) is the sampling probability of (B, 0).

However, given the dynamic nature of nanonetworks,
with frequency changes in traffic load and energy status of
each nano-node, as well as the time needed for the network
to learn the new scenario, it is possible that the algorithm
that does not converge every time. Still, the utilization of
routing and deflection tables should minimize the conse-
quences of inaccurate routing information.

4.3.3 Overhead of transmitted packet and updating pro-
cess

After sending packets, nano-nodes receive the ACK packet
from the next-hop nano-node. By referring to [43], the
probability of transmitting the packet successfully from one
nano-node to the next-hop can be expressed as

?BD2 = ?�0C0?�� (1 − ?2>;) , (19)

where ?�0C0 and ?�� are the probabilities of no error
during data and ACK packets transmission, respectively.
?2>; is the probability of collision.

The transmission could fail when: (i) the data packet is
not received correctly by the next-hop nano-node; or (ii)
the ACK packet is not received correctly by the sending
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nano-node. The probability of the above two cases can be
expressed as:

?1 = 1 − ?�0C0 + ?�0C0?2>; , (20)

?2 = ?�0C0 (1 − ?2>;) (1 − ?�� ) . (21)

The energy consumption of the above three cases are

�BD2 = �
)
�0C0 + �'�� , (22)

�1 = �
)
�0C0, (23)

�2 = �
)
�0C0 + �'�� , (24)

where �)
�0C0

= [�0C0��0C0�
)
? is the energy of sending a

data packet, [�0C0 is the ratio of symbol “1” in a data packet,
��0C0 is the size of a data packet , �)? is the transmitting
pulse energy. �'

�� 
= [�� ��� �

'
? is the energy of receiv-

ing an ACK packet, where [�� is the ratio of symbol “1”
in an ACK packet, ��� is the size of ACK, �'? is receiving
pulse energy. Then, the energy consumption of transmitting
a packet successfully from one nano-node to the next-hop
can be obtained as follows [19], [43]:

�) A0=B =
1
?BD2

(�BD2 ?BD2 + �1?1 + �2?2) . (25)

Substituting (19), (20), (21), (22), (23) and (24) into (25),
we obtain

�) A0=B =
1

?�0C0?�� (1 − ?2>;)

(
�)�0C0 (1 − ?�0C0 + ?�0C0?2>;)

+
(
�)�0C0 + �'�� 

)
?�0C0 (1 − ?2>;) (1 − ?�� )

)
+ �)�0C0 + �'�� . (26)

Similarly, the energy consumption of receiving a packet
can be expressed as

�'424 =
1

?�0C0?�� (1 − ?2>;)

(
�'�0C0 (1 − ?�0C0 + ?�0C0?2>;)

+
(
�'�0C0 + �)�� 

)
?�0C0 (1 − ?2>;) (1 − ?�� )

)
+ �'�0C0 + �)�� , (27)

where �'
�0C0

= [�0C0��0C0�
'
? is the energy consumption of

receiving a data packet. �)
�� 

= [�� ��� �
)
? is the energy

consumption of transmitting an ACK packet. Since the hops
of different routings could be different, we only consider
the situation of one nano-node to the next-hop nano-node,
the end-to-end probability and energy consumption can be
obtained by multiplying the node-to-node probabilities and
summing up the node-to-node energy consumption from
hops to hops.

4.3.4 Packets structure
To make the tables adapt to the changes in the nano-node
energy status and network traffic load, the forward and
feedback packet needs to contain the reward information.
Hence, the format of the data packet should be revised. The
structure of the data packet (Fig. 3) consists of three parts,
including the MAC layer header, the network layer header,
and the payload. The Receiver Address in the MAC header is
the nano-node that the packet is sent to and the Transmitter
Address identifies the local nano-node. The Protocol in the

Protocol Time To Live

Total Length Packet ID

Source Address

Destination Address

Reward Energy Status

Energy Harvesting Speed Energy Consuming Speed

Receiver Address Transmitter Address

0 15 16 31

0 157 8

0 15 16 31

0 31

0 31

0 15 16 31

0 15 16 31

MAC Layer
Header

Network Layer
Header

Payload

…

Fig. 3. The structure of a data packet.

Fig. 4. The structure of a feedback packet.

network layer header decides what kind of routing algo-
rithm the nano-node chooses. The Time To Live (TTL) is the
number of hops the packet can go through and is utilized to
avoid looping in the network. It decreases by one through
each hop, and the packet is discarded when the value comes
to zero. The Total Length is the length of the entire packet.
The Packet ID is used to identify the packet. Source Address
and Destination Address are the nano-node which generates
the packet and the final hop nano-node, respectively. The
Reward, Energy Status, Energy Harvesting, and Consuming
Speed are used to update the nano-node energy status in
both tables. The structure of feedback packet is shown in
Fig. 4. There are three types of feedback packet, including
ACK, ACK without updating information and NACK. In
the NACK packet, there is no reward information. The Policy
decides which feedback updating scheme is adopted of the
nano-node.

Additionally, energy is also limited in nano-nodes. In the
MDR-RL, once a nano-node receives a forwarded or feed-
back packet, it needs to compute the reward to update the
routing and deflection tables. Hence, the overhead of this
computation process is also considered in the simulations.

5 SIMULATIONS AND ANALYSIS

In this section, the performance of the proposed MDR-RL
is studied with different parameters. Firstly, in Sec. 5.1,
three performance metrics in nanonetworks are defined,
namely, packet delivery ratio, number of delivered packets
and packet average hop count. A nanonetwork environment
simulation platform and all the parameters are presented in
Sec. 5.2. The actual results are presented in Sec. 5.3 to 5.7.

In our analysis, we compare the MDR-RL using on-
policy updating, off-policy updating, no feedback updat-
ing, and no updating schemes. For the MDR-RL using
no feedback updating scheme, only the forwarded data
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TABLE 3
Complexity comparison of different algorithms

Algorithm ML Technique Training mode Attributes Table update Parameters/Model update Energy prediction

MDR-RL Reinforcement
learning On-line

Deflection ratio
Loss probability

Hop count to destination
Energy status

Yes

Learning rate
Recovery coefficient

Decay coefficient
Q-value

Yes

NNR Neural Network Off-line

Hop count to destination
Node energy status

Loss probability
Node popularity

Yes No No

DTR Decision Tree Off-line

Hop count to destination
Node energy status

Loss probability
Node popularity

Yes No No

packet contains reward information, and can be used to
update the routing and deflection tables, i.e., there is no
updating information in the ACK packets. In the MDR-RL
using no updating scheme, all the packets have no updating
information and, thus, nano-nodes cannot update the tables.
In addition, we study two additional machine learning
routing algorithms (NNR and DTR). In NNR and DTR, a
delivery probability at the next-hop selection is computed
by a trained machine learning model. The message must be
only forwarded from the sender to the neighboring receiver
node if the intermediate node has a high enough probability
of forwarding it directly or indirectly to the destination
node. The following attributes are involved in the training
processes: hop count to the destination, node energy status,
node loss probability and node popularity.

Table 3 compares the complexity of the above algorithm
in some aspects. Comprehensively, MDR-RL is more compli-
cated than NNR and DTR. On the one hand, in the MDR-RL,
the updating parameters (learning rate, recovery and decay
coefficient) need to be updated during every transmission.
However, in NNR and DTR, the trained models cannot be
updated during the transmissions. On the other hand, in
the MDR-RL, an energy prediction scheme is implemented
to help the decision-making process, which also increases
the complexity.

In the following section, to study the performance of
different algorithms, extensive simulations are conducted
with different parameters, including the transmission range,
density of nano-node, energy harvesting rate and maximum
deflection time.

Furthermore, to investigate the influence of different up-
dating parameters in the learning process, including learning
rate U, recovery coefficient V, and decay coefficient W, more
simulations are conducted in Sec. 5.7.

5.1 Target Performance Metrics

In this paper, the energy efficiency, network throughput and
latency (in terms of packet delivery ratio, number of de-
livered packets and packet average hop count) of nanonet-
works are regarded as the metrics to investigate the perfor-
mance of different routing algorithms. The packet delivery
ratio is obtained by #34;

#64=
, where #34; and #64= are the total

delivered packet number and generated packets number
in the network, respectively. Given the identical simulation
duration and energy harvesting rate, higher packet delivery

ratio indicates higher energy efficiency. Moreover, the num-
ber of delivered packets #34; could reflect the throughput
of nanonetworks. Larger #34; indicates higher throughput
of nanonetwork. The latency can be reflected through the
average packet hop count. Since larger average packets hop
count means that the packets go through more hops to the
destinations, it indicates higher latency of nanonetworks.

5.2 Simulation Platform for Energy Harvesting
Nanonetworks

To investigate the performance of MDR-RL with differ-
ent updating schemes, a simulation platform for energy
harvesting nanonetworks is developed based on ns-3 and
TeraSim [44], [45]. Ns-3 is an open-source project avail-
able for researchers, and is widely used for simulation in
network systems. TeraSim is built as an extension for ns-
3, which enables the networking community to test THz
networking protocols without having to delve into the
channel and physical layers. In the developed simulator
platform, we consider all the nano-nodes equipped with
sensing unit, nano-battery, energy harvesting unit, memory
unit, processing unit, and transmission unit. The sensing
unit can detect from the environment and initiate packet
sending requests when energy is sufficient. The energy
harvesting unit can harvest energy from the environment
to recharge the nano-battery. The memory unit is used to
store the packet, routing and deflection tables, and other
basic codes. In the simulations, we consider the memory
unit can only store one data packet. The processing unit
is used to perform the tables update and control process.
The responsibility of the transmission unit is to send and
receive packets. In the network layer, we consider a random
distribution of nano-nodes, and all the nano-nodes have no
route entry initially. Moreover, different routing algorithms
are implemented to investigate the performance.

In the MAC layer, a simple ALOHA MAC protocol with
ACK and NACK is considered. The transmission process
ends when the transmitting nano-node receive an ACK or
NACK packet from next-hop nano-node, or exceeds the
maximum waiting time. In the physical layer, a common
modulation scheme is adopted, named Time Spread On-Off
Keying (TS-OOK) [46].

Table 4 gives the parameters used in the simulations. The
packet sending request interval of nano-node is not fixed,
but happens randomly every 1 to 9 seconds. However, a
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TABLE 4
Parameters used in the simulations

Parameters Value
Simulation duration 500 s

Density of nano-nodes [20 − 40] × 10−2

nodes/mm2

Packet sending request interval [1 - 9]s
Packet Time To Live 15 hops

Pulse duration 100 fs
Pulse Inter-arrival Time 10 ps

Transmission range of nano-nodes [4 - 7] mm
Learning rate U

Recovery rate V
Decay rate W

[0.1 - 0.9]

Maximum energy capacity
of nano-nodes 60 pJ

Average energy harvesting rate [2 - 4] pJ
Packet size 130 Bytes

ACK size with reward information 13 Bytes
NACK size 9 Bytes

Update process energy 1/30×Transmission
energy

Signal-to-noise SNR 10 dB
Boltzmann constant : 1.38 × 10−23 J/K

Bandwidth � 4 × 1012 Hz
Environment temperature ) 300 K
Antenna design frequency 5 1.6 × 1012 Hz

nano-node does not send packets until it harvests enough
energy. The packet TTL is set to 15 hops due to the high
density of nanonetworks. The values of pulse duration and
pulse inter-arrival time are set according to [43]. Consider-
ing the high path loss in the THz band and limited trans-
mission power, the transmission range that a nano-node can
achieve is only of a few millimeters. The energy spent in
sending and receiving packets depends on the Signal-to-
Noise Ratio (SNR) threshold. The relationship between the
received pulse power and SNR can be expressed as:

%A G

#
≥ (#', (28)

where %A G is the received THz signal powers, and # is the
noise power, which can be obtained by

# = : · � · ), (29)

where : refers to the Boltzmann constant, � refers to the
bandwidth, and ) stands for the environment temperature.
According to our earlier work [15], [47], the minimum pulse
energy of TS-OOK modulation scheme can be expressed as

�? = %C G)? =
(#' · : · � · )16c2A2 5 2

22 )? . (30)

where 2 is the speed of light, A is the distance between
transmitter and receiver, 5 is design frequency of antenna,
)? is pulse duration of TS-OOK modulation scheme.

Furthermore, to study the influences of different param-
eters in the learning process, the values of learning rate,
recovery and decay coefficients are set to range from 0.1 to
0.9.

5.3 Simulations with Different Transmission Ranges

In Figs. 5, 6 and 7, the simulations with different transmis-
sion ranges are presented. Here, the nano-nodes density is

3 4 5 6 7
Transmission Range (mm)

40

50

60

70

80

90

Pa
ck

et
 D

el
iv

er
y 

R
at

io
 (

%
)

On-Policy
Off-Policy 
Neural Network
No feedback
Decision Tree
No update

Fig. 5. Packet delivery ratio with different transmission ranges

25 × 10−2 nodes/mm2, the energy harvesting rate is 3.0 pJ/s,
and the maximum deflection time is 1.

Comprehensively, the performance of MDR-RL is better
than DTR. The main reason is that, in DTR, the next-hop
selection is decided by the off-line trained model, and the
parameters of the trained model cannot adapt to the change
of network traffic. However, the performance of NNR is
better than DTR and MDR-RL with no feedback update
policy, but worse than MDR-RL with off-policy and on-
policy schemes. On the one hand, the model of NN is more
efficient than DT [26], [27]. On the other hand, although
the updating and energy prediction processes of MDR-RL
need more computational energy than NNR and DTR, it
helps the next-hop nano-node selection processes, which
improves the network performance.

It also can be observed from Fig. 5 that: (i) the packet
delivery ratio when the transmission range is 4 mm is
greater than that in 3 mm case. When nano-nodes have
a greater transmission range, it is more likely for them
to find an adequate routing path. However, according to
(30), a higher transmission range also requires a higher
transmission power, which leads to greater energy con-
sumption. Hence, when the transmission range exceeds 4
mm, the packet delivery ratio decreases with the increase
of transmission range. Therefore, the optimal transmission
range needs to be tested when designing the nanonetwork.
(ii) The packet delivery ratio of MDR-RL with on-policy
updating scheme is greater than it with off-policy updating
scheme. In the on-policy updating scheme, a nano-node
sends feedback reward of the corresponding routing path
which forwards the packet successfully. However, in the off-
policy updating scheme, a nano-node sends the feedback
reward of the corresponding routing path with minimum
Q-value, no matter it forwards the packet successfully or
not. This indicates that on-policy updating scheme always
chooses the “safest” path to send packets, while the off-
policy updating scheme prefers to choose the “shortest”
paths. (iii) The packet delivery ratio of MDR-RL with no
feedback updating scheme is smaller than on-policy and
off-policy updating schemes, but greater than no updating
scheme. Although additional updating processes increases
the computational energy consumption, it updates the rout-
ing and deflection tables to improve the probability to find
the more appropriate routing paths to destinations, which
increases the packet delivery ratio.

From Fig. 6, it can be concluded that the delivered
packet numbers of all routing algorithms decrease with
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Fig. 6. Number of delivered rackets with different transmission ranges
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Fig. 7. Packet average hop count with different transmission ranges

transmission range. More energy is required to transmit
signals further due to higher path loss.

In Fig. 7, the effects of different transmission ranges
on the average hop counts are investigated. Increasing the
transmission range helps the nano-node find shorter paths
to deliver packets, which decreases the average hop count.
The average hop counts of MDR-RL using off-policy up-
dating scheme are smaller than it with on-policy updating
scheme, because off-policy updating scheme always tries
to choose the “shortest” routing path to update the corre-
sponding routing and deflection tables.

5.4 Simulations with Different Nano-node Densities

The effects of different nano-node densities on the perfor-
mance are presented in Figs. 8, 9 and 10. In these simu-
lations, the transmission range is set to 4 mm, the energy
harvesting rate is 3.0 pJ/s and the maximum deflection time
is 1.
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Fig. 8. Packet delivery ratio with different nano-node densities
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Fig. 9. Number of delivered packets with different nano-node densities
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Fig. 10. Packet average hop count with different nano-node densities

As shown in Fig. 8, with nano-node densities ranging
from 20 × 10−2 to 25 × 10−2 nodes/mm2, the packet delivery
ratios of all routing algorithms increase. On the one hand,
the relative distances between nano-nodes decrease with the
increase of nano-node density, which makes it easier to find
shorter routing paths to destinations. On the other hand,
for NNR and DTR, the routing and deflection tables are up-
dated more frequently with more nano-nodes. For MDR-RL,
the updating parameters of MDR-RL also can be updated
more frequently, which helps nano-nodes converge to better
status. However, from 25 × 10−2 to 40 × 10−2 nodes/mm2 of
nano-node density, the packet delivery ratios of all routing
algorithm decrease. The probability of finding the optimal
routing paths to destination nano-nodes decreases with the
increase of nano-node quantity.

Figure 9 illustrates the impact of the nano-node density
on the number of delivered packets. We can conclude that
the delivered packet numbers of all routing algorithms
increase with the density of nano-nodes. The reason is
that more packets are generated by increased nano-nodes.
However, the MDR-RL can adapt to the change of network
traffic load, and can update routing tables and parameters
by forwarded data and feedback packets. Therefore, the
delivered packet number of MDR-RL can still maintain a
higher growth rate.

Finally, as observed in Fig. 10, an increase in the nano-
node density increases the packet average hop count of all
the routing algorithms. This is because more nano-nodes
could increase the hops from sources to destinations. The
MDR-RL with off-policy has the lowest packet average hop
count.
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Fig. 11. Packet delivery ratio with different energy harvesting rates
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Fig. 12. Number of delivered packets with different energy harvesting
rates

5.5 Simulations with Different Energy Harvesting Rates

The effects of different energy harvesting rates on the per-
formance are presented in Figs. 11, 12 and 13. In these
simulations, the transmission range is 4 mm, the nano-node
density is 25×10−2 nodes/mm2 and the maximum deflection
time is 1.

As shown in Fig. 13, the increase of the energy harvesting
rate leads to higher average hop count, which indicates
higher average network latency. This does not mean that a
higher energy harvesting rate results in worse performance.
Instead, nano-node can harvest more energy with a higher
energy harvesting rate. As a result, more paths become
available, ultimately increasing the packet delivery ratio.
This can also be verified in Fig. 11. Moreover, as shown
in Fig. 12, with a higher energy harvesting rate, nano-nodes
can generate more packets.
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Fig. 13. Packet average hop count with different energy harvesting rates
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Fig. 14. Packet delivery ratio with different maximum deflection times
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Fig. 15. Number of delivered packets with different maximum deflection
times

5.6 Simulations with Different Maximum Deflection
Times

In Figs. 14, 15 and 16, the effects of different maximum
deflection times on the network performance are presented.
In these simulations, the transmission range is set to 4 mm,
the energy harvesting rate is 3.0 pJ/s and the nano-node
density is 25 × 10−2 nodes/mm2.

When the route entry in the routing table is invalid,
the nano-node deflects the packet to a neighbor decided
by the deflection scheme proposed above. After that, if the
nano-node still does not receive the ACK packet from the
next-hop and deflection time does not exceed maximum
deflection time, it deflects the packet to another neighbor.

Theoretically, increasing the deflection time could in-
crease the probability of transmitting packets successfully
without considering the energy. However, due to the ex-
tremely limited energy capacity, nano-nodes could run out
of energy more quickly because of extra deflection. Hence,
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Fig. 16. Packet average hop count with different maximum deflection
times
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Fig. 17. Simulations with different learning rate
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Fig. 18. Simulations with different recovery coefficient

the performance deteriorates with the increase of maximum
deflection time. The simulations also verify this: the packet
delivery ratio and number of delivered packets decrease
with the increase of maximum deflection time, which can be
observed from Figs. 14 and 15. In Fig. 16, it can be observed
that the average hop count increases with the increase of
maximum deflection time, which indicates higher latency of
the network.

5.7 Simulations with Different Updating Parameters

To study the influences of the different learning and updat-
ing parameters of MDR-RL, including learning rate, recovery
and decay coefficients, extensive simulations with different
values of these parameters are conducted. In these simu-
lations, the transmission range is 4 mm, the energy har-
vesting rate is 3.0 pJ/s, the nano-node density is 25 × 10−2

nodes/mm2 and the maximum deflection time is 1. We
only compare the MDR-RL using on-policy, off-policy, and
no feedback updating schemes, owing to only these three
algorithms have the updating process.

5.7.1 Simulations with Different Learning Rates
In the simulations with different learning rates, the recovery
and decay coefficients are set to 0.1 and 0.9, respectively.

It can be concluded from Fig. 17(a) to 17(c) that: (i)
comprehensively, the MDR-RL using no feedback updating
scheme has the worst performance, since only forwarded
packets are utilized to update the routing and deflection
tables; (ii) overall, the on-policy updating scheme has better
performance on the packet delivery ratio and number of
delivered packets, but worse performance on average hop
count than off-policy updating scheme. The reason is that
on-policy updating scheme always chooses a “safe” routing

path to update the routing and deflection tables, but off-
policy updating process prefers a “short” one; (iii) in this
case, 0.3, 0.5, 0.5 are the best learning rate for on-policy, off-
policy, and no feedback updating schemes, respectively.

Combining Figs. 17(a) and 17(b), the changing trends of
packet delivery ratio and number of delivered packets are
consistent with the change of learning rate. However, under
the condition of consistent energy harvesting rate, higher
packet average hop count indicates more energy is spent on
forwarding packets, which could increase the transmission
failure probability. Therefore, the changing trends of packet
delivery ratio and average hop count are inverse, which can
be verified in Figs. 17(a) and 17(c).

5.7.2 Simulations with Different Recovery Coefficients
In the simulations with different recovery coefficients, the
learning rate and decay coefficient are set to 0.1 and 0.9
respectively.

As shown in Fig. 18(a) to 18(c), comprehensively, in this
case, 0.1, 0.9, 0.9 are the best recovery coefficient for on-policy,
off-policy and no feedback updating schemes, respectively.

5.7.3 Simulations with Different Decay Coefficients
In the simulations with different decay coefficients, the learn-
ing rate and recovery coefficient are both set to 0.1.

It can be observed from Fig. 19(a) to 19(c), 0.9, 0.7, 0.1
are the best decay coefficient for on-policy, off-policy and no
feedback updating schemes, respectively.

6 CONCLUSIONS

A multi-hop deflection routing algorithm based on RL is
proposed in this paper to improve the performance of multi-
hop communication in nanonetworks. In the algorithm, a
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Fig. 19. Simulations with different decay coefficient

new deflection table is established to enable nano-nodes to
deflect packets when the next-hop nano-node in the routing
table is invalid. Moreover, an energy prediction scheme is
implemented to help the deflection decision-making pro-
cess. The reward information, including Q-value and hop
count of the corresponding routing path, packet drop ratio,
packet deflect ratio, and energy status of nano-node are
considered to update the deflection and routing tables.
One forward updating scheme and two feedback updating
schemes are proposed to make the nano-node adapt to the
dynamic of network (change of status of nano-node and
network traffic load) and explore the optimal routing paths
to destinations.

Based on extensive simulation results in ns-3, the MDR-
RL using on-policy updating scheme has the best perfor-
mance in terms of packet delivery ratio and number of
delivered packets when compared to DTR, NNR, and MDR-
RL using off-policy, no feedback, and no updating schemes.
In the three kinds of updating schemes, the off-policy up-
dating scheme has the smallest packet average hop count,
which indicates the smallest delay. Moreover, the effects
of different learning and updating parameters of MDR-RL
are presented, the optimal values of learning and updating
parameters need to be tested in different scenarios.
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