
Wireless Optogenetic Neural Dust for

Deep Brain Stimulation

Stefanus A. Wirdatmadja∗, Sasitharan Balasubramaniam∗, Yevgeni Koucheryavy∗, Josep Miquel Jornet†

∗Department of Electrical Engineering and Communications

Tampere University of Technology, Finland

Email: (stefanus.wirdatmadja, sasi.bala, yk)@tut.fi
†Department of Electrical Engineering

University at Buffalo, The State University of New York

Buffalo, NY, 14260

Email: jmjornet@buffalo.edu

Abstract—In recent years, numerous research efforts have been
dedicated towards developing efficient implantable devices for
Deep Brain Stimulation (DBS). However, there are limitations
and challenges with the current technologies. Firstly, the stimu-
lation of neurons currently is only possible through implantable
electrodes which target a population of neurons. This results
in challenges in the event that stimulation at the single neuron
level is required. Secondly, a major hurdle still lies in developing
miniature devices that can last for a lifetime in the patient’s
brain. Recently, the concept of neural dust has been introduced
as a way to achieve single neuron monitoring and potentially
actuation. In parallel to this, the field of optogenetics has emerged
where the aim is to stimulate neurons using light, usually by
means of optical fibers inserted through the skull. Obviously,
this introduces many challenges in terms of user friendliness
and biocompatibility. We address this shortcoming by proposing
the wireless optogenetic neural dust (wi-opt neural dust). The wi-
opt neural dust is equipped with a miniature LED that is able
to stimulate the genetically engineered neurons, and at the same
time harvest energy from ultrasonic vibrations. The simulation
results presented in the paper investigates the behaviour of the
light propagation in the brain tissue, as well as the performance of
designed circuitry for the energy harvesting process. The results
demonstrates the feasibility of utilizing wi-opt neural dust for
long term implantation in the brain, and a new direction towards
precise stimulation of neurons in the cortex.

I. INTRODUCTION

In recent years numerous neurological disorders have led

researchers to seek new solutions to improve monitoring as

well as treatment techniques. For example, solutions have

been developed for electrodes to be placed into the brain and

upon stimulation will lead to minimisation of trembling due to

parkinson disease. In another work, known as optogenetics, op-

tical light is used to stimulate genetically engineered neurons

that are sensitive to light at a particular wavelength [1]. The use

of optogenetics can lead to precise single neuron stimulation.

However, a major drawback with the current techniques is

the fact that the technologies require insertion of electrodes or

optical cables into the skull. While it does solve the problems,

and opens up innovation, the proposed techniques are not

practical for everyday use by the patients.

In this paper, we propose the wireless optogenetics neural

dust, which we refer to as wi-opt neural dust. The wi-opt

neural dust advances the neural dust proposed by [2], which

is only limited to monitoring the neurons and reporting back to

the sub-dura transceiver through back scattering. The benefits

of integrating the wireless optogenetic component to the neural

dust is to enable single neuron stimulation, while envisioning

long term implantation of the device. However, there are a

number of challenges in realising a fully operational wi-opt

neural dust. Firstly, the devices will need to be powered,

and this is a challenge given the miniature size of the entire

unit. For practical use, the device must avoid the use of

batteries, which could potentially lead to toxic leaks as well as

requirements of surgery to change them. Secondly, since our

objective is to stimulate the neurons, the energy harvesting

component is required to absorb sufficient amount of energy

that can be used for stimulation. The paper addresses each of

these challenges by proposing a design of the device that is

able to harvest energy from ultrasound waves, which is used

to power a LED unit. The paper presents simulation work

to demonstrate the feasibility of the wi-opt neural dust, by

initially presenting the behaviour of the light propagation in

the brain tissue based on the energy harvested, as well as

the energy harvesting efficiency based on variations of the

ultrasonic frequency, as well as size and components of the

wi-opt neural dust circuitry.

This paper is organized as follows: Sec. II introduces the

system model of the wi-opt neural dust. Sec. III presents the

circuitry of the device, while the simulation of the wi-opt

neural device is discussed in Sec. IV. Lastly, Sec. V presents

the conclusion.

II. SYSTEM MODEL

The neural dust architecture, first introduced in [2] is

illustrated in Fig. 1. It will be the same proposed in this

paper. The architecture consist of wi-opt neural dust devices

that are embedded in various parts of the cortex and interfaces

to neurons.

Unlike the neural dust, the wi-opt neural dust contains

a LED that interfaces to neurons and stimulates it using

light, as illustrated in Fig. 2. The neurons in this case are

engineered to be sensitive to light at a specific wavelength
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where Pnd and Ps are the power intensity level at the surface of

the device and the acoustic wave source, respectively, α is the

attenuation coefficient of the brain tissue, f is the acoustic

wave frequency, and d is the distance between the wi-opt

neural dust and the sub-dura transceiver. Due to this factor,

720 mW/cm2 acoustic wave radiation is attenuated to ≈ 60mW

on a 100× 100µm2 wi-opt neural dust mote implanted at 2

mm brain tissue of the cortex. Moreover, not all the acoustic

wave power received by the neural dust mote is converted to

electrical power, and this depends on the conversion rate of the

corresponding energy harvester. Suppose that the conversion

rate (η) is 0.5, the electrical power generated by it is 30 mW.

The conversion process is represented as

Pnd = indAEH , (2)

Pe = Pndη, (3)

where Pnd and Pe are the power received to vibrate the

nanowire energy harvester and the electrical power after the

conversion from mechanical to electrical energy; AEH is the

effective surface area of the energy harvester.

B. Storage Capacitors

As the nanowires generates AC current, full-wave rectifi-

cation is required before the generated signal is fed to the

capacitors. Since the generated voltage from nanowires (Vg)

is 0.42 V [8], several capacitors are required to fulfill the

energy requirement of the LED. For this purpose, micro-

supercapacitors based on interdigital electrodes of reduced

graphene oxide and carbon nanotube composite can be used

[9]. Based on the electrical power and voltage supplied by

energy harvester, the flowing current (Ig) can be represented

as:

Ig =
Pe

Vg

. (4)

A single micro-supercapacitor with the surface area of 100

x 100 µm2 has a capacitance value of 280 µF . Due to the

limited voltage source and power requirements of the LED,

different capacitor circuits are required during the charging and

discharging cycles. A parallel capacitor circuit is used during

the charging process, while a series connection is used for

the discharging process. For a single supercapacitor Ccap, the

number of different capacitance value n for the series Ccapser

and parallel Ccappar connections can be represented as:

Ccappar = nCcap, (5a)

Ccapser =
Ccap

n
. (5b)

Therefore, the total voltage fed to the LED is the sum of

the voltage of the n capacitors. Depending on the vibration

frequency of the nanowires, the electrical charging rate can be

formulated as [8]:

∆Q = Igtcycle =
Ig

f req
, (6)

where ∆Q is the electrical charge per cycle, Ig is the current

from the energy harvester, and tcycle =
1

f req
is the cycle period

for the emitted ultrasound waves.

C. Light Source and Optogenetics

In optogenetics, the neurons are genetically engineered

so that the ion channels are sensitive to light at a specific

wavelength. Upon illumination of light, the neuron generates

Action Potential (AP) which in turn triggers an electro-

chemical signal along the axon of the cell. One approach

of engineering the cell is to use Channelrhodopsin-2 (ChR2)

which is a protein extracted from green alga Chlamydomonas

reinhardtii that modifies the cells to have light-gated cation-

selective membrane channels [10].

In order to model the circuit to excite the optogenetic

process, the light intensity level should be at an optimum

level. The excitation needs to be low enough to utilize the

limited electrical energy and sufficiently high to satisfy the

power requirements of the LED. The optogenetic construct

ChR2 gets activated by ≈ 470 nm light with an intensity of ≈

1 mW/mm2 [11]. For the LED unit, the InGaN Cree’s Direct

Attach DA2432 LED [12] can be used in this application. This

LED can operate with an electrical current level starting from

5 mA with wave length of 465 nm that generates ≈ 5 mW of

optical power [13].

Inside the brain tissue, light wave experiences scattering,

absorption, and conical (geometrical) spreading. This effect

can be formulated by the Kubelka-Munk model which gives the

theoretical calculation for light propagation through scattering

and absorptive media [14].

I(z)

I(z = 0)
=

ρ2

(Sz+1)(z+ρ)2
, (7)

ρ = r

√

(

n

NA

)2

+1, (8)

where r is the radius of the light source, NA is the numerical

aperture, n is the refractive index of the tissue (1.36 for gray

matter), and S is the scatter coefficient per unit thickness (z).

The calculation of time required by the storage capacitors

to be able to have enough energy to illuminate the LED with

respect to the number of cycles (of ultrasound frequency) is

formulated as [8]:

ncyclecharge
=

⌈

−

VgparCcappar

∆Qpar

ln

(

1−

√

2Emaxpar

CcapV 2
gpar

)⌉

. (9)

Meanwhile for illuminating the LED which is related to

storage capacitor discharging, the required time with respect

to the number of cycle is calculated using the series circuitry,

and is represented as follows:

ncycledischarge
=

⌈

−

VgserCcapser

∆Qser

ln

(√

2Emaxser

CcapV 2
gser

)⌉

, (10)

where Emax is the maximum electrical energy that can be

stored in the storage circuit.
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Furthermore, the voltage value during the charging and

discharging process can be calculated based on the approach

in [8], and is represented as follows:

Vcapcharge
(ncycle) =Vgpar

(

1− e
−

ncyclepar
∆Qpar

VgparCcappar

)

, (11)

Vcapdischarge
(ncycle) =Vgser e

−

ncycleser
∆Qser

VgserCcapser . (12)

In Eq. (11) and (12), subscript par and ser indicate the parallel

and series connection of the storage capacitors, respectively.

Lastly, since we want to be able to invoke specific wi-opt

neural dust to stimulate certain neurons, an addressing mecha-

nism is required. In order to enable frequency selective lighting

of the LEDs, a frequency filter switch can be incorporated into

the circuit. The switch is a logical ’AND’ gate that decides if

the energy storage in the capacitor will lead to the discharging

process of the LED. In this case, the concept of VOX (Voice

Operated Switch) can be applicable.

IV. SIMULATIONS

TABLE I
SIMULATION PARAMETERS

Parameter Value [Unit] Description

Neural Dust Density 0.024 to 1.2 [/cm3] Randomly scattered
Frequency 500 to 3M [Hz] Ultrasound freq
Depth Radius 2 to 60 [mm] Into the brain
Interfiring period 6 [ms] Mean (exponential dist)
Data sample 10,000 Random data

Nanowire surface area 104 to 2×104 [µm2] Energy harvester

The wi-opt neural dust are simulated to investigate its

optical behaviour when interfaced to cells as well as the

behaviors of the device with respect to its charging and

discharging capabilities to light up the LED. The parameters

used for the simulations are presented in Table I.

A. Optical Light Behavior in Brain Tissue

Since the light source is embedded in the brain tissue, the

light intensity is attenuated as it propagates through the tissue

according to the attenuation coefficient of the medium. The

optical power produced by the LED depends on the applied

current percentage [13]. As the optical power level lessened

by distance, the placement of the wi-opt neural dust has to

consider the optimal position with regard to the optogenetic

construct.

Monte Carlo simulations [15] and the Kubelka-Munk model

[16] are often used to analyse light propagation in optogenetics

field. In this work, we simulate the light propagation in hu-

man brain tissue using COMSOL Multiphysics software with

Helmholtz model representation. The light transport model

with Finite Element Method in COMSOL simulation includes

the geometry and optical properties of the materials such as

scattering and absorption. The model solves the fluence rate

(light intensity) u or Φ(r, t), given the diffusion coefficient c

or D(r, t), absorption coefficient a or µa, and source term f or

S(r, t) according to the following Helmholtz equation:

−∇D(r, t)∇2Φ(r, t)+µaΦ(r, t) = S(r, t)

∇(−c∇u)+au = f .
(13)

In our scenario, the LED is modeled as an ellipsoid, whereas

the neuron cells and propagation medium as spheres. The

absorption coefficients of LED, neuron cells, and brain tissue

are set to 0, 0.36/mm, and 0.014/mm, respectively [15]. The

diameters of LED and brain tissue model are ≈100µm and

500µm, while we set 100µm diameter for single neuron cell

and various diameters for more than one neuron cell model.

The frequency domain study is chosen for wavelength of 470

nm which corresponds to blue light.

Fig.4(a) shows the light intensity generated by the light

source radiated by half of the ellipsoid surface. Close to the

source, the light intensity is high depicted by the red color.

When we add the neuron cell model with the distance of

10µm from the light source, the intensity pattern changes

due to different absorption coefficient of the materials. This

phenomenon is shown in Fig.4(b). We also investigate the

intensity pattern for the situation similar to the brain envi-

ronment where there are more than one neuron cell close to

each other. The distance range is between 10-20 µm by LED

vicinity. Therefore, we add several neuron cells with the same

optical properties but different sizes and distances from the

light source. Fig.4(c) shows the light intensity pattern affected

by multiple neuron cells.

From the simulation, it can be seen that distance and cells

affect the attenuation of light propagation. As a result, the

narrower pattern is formed as the number of surrounding

neuron cells increases. This can be beneficial as one wi-

opt neural dust might excite several optogenetic constructs if

desired. On the other hand, it will create unwanted effects

when excitation of undesired neuron occurs.
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Fig. 5. Illustration of storage energy as a function of time with frequency
variation where the neural dust mote is 2 mm deep into the brain during
charging process.

B. Energy and Power Evaluation

In order to figure out the operational characteristics of a sin-

gle wi-opt neural dust, it is important to evaluate the charging
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(a) Wi-opt neural dust LED light emission model (b) LED light emission on a single neuron cell. (c) LED light propagation surrounded by several
neuron cells.

Fig. 4. COMSOL multiphysics simulation of the LED light propagation behaviour within the brain tissue.
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Fig. 6. Illustration of the storage energy as a function of time where the
neural dust mote is 2 mm deep into the brain during discharging process.
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Fig. 7. Illustration of storage energy as a function of time with frequency
variation where the neural dust mote is 2 mm deep into the brain during
charging process.

and the discharging duration of the storage capacitors. These

factors are affected mainly by the depth of the device planted

into the brain and the frequency of the ultrasonic waves emit-

ted from the sub-dura transceiver, while the constant intrinsic

values of the storage capacitors are calculated based on the

energy harvester and light source component. Considering the

ontogenetic requirements for neuron stimulation, the circuit

model explained in Sec.III has to be able to illuminate the

LED for at least 5 msec duration [17]. In our simulations, each

cycle utilizes 10 thousand random values for neuron sequence

firing. The neuron inter-firing period is based on exponential
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Fig. 8. Illustration of the capacitor power as a function of time where the
neural dust mote is 2 mm deep into the brain during discharging process. The
5 msec limit is the minimum duration threshold required by the LED to emit
light in order to successfully stimulate the neuron.
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Fig. 9. Illustration of storage energy as a function of time for various
frequencies and two different nanowire surface area.

distribution as their sequences can be represented as a poisson

process (Rate as a Spike Count and Fano Factor) [18]. Fig. 5

presents the amount of stored energy with respect to time.

Although higher frequencies suffer from higher attenuation

within the brain tissue, this difference is very small in terms

of the amount of energy stored with respect to time, as shown

in Fig. 5. This also means that using different frequencies for

the addressing mechanism will not come at a cost of variations

in the charging durations. This factor must also be included

in design consideration, especially when selective frequency

is required to invoke specific wi-opt neural devices as well as

the design of the sub-dura transceiver. Fig. 6 shows the graph
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of the energy discharging of the capacitor storage. As shown

in the discharging plot, the period to release the energy goes

beyond the minimum 5 msec duration, ensuring that sufficient

light intensity is applied to the neurons. Comparing Fig. 5

and Fig. 6, there is significant gap in time. The reason behind

this is because the parallel and series capacitor connections

during charging and discharging process. This configuration

affects the electrical properties of the storage circuit, such as

the capacitance value and the voltage value.

Fig. 7 present the results when different quantity of capac-

itors are used for the devices. Intuitively, we can see that an

increase in the number of capacitors will definitely increase

the quantity of energy stored, but comes at a cost of longer

charging durations. This also means that higher number of

ultrasound frequency cycles are required. The benefit of this

configuration is that the device can maintain a certain amount

of energy to stimulate neuron with short inter-firing periods,

provided that a pausing process can be incorporated into the

circuit. Fig. 8 presents the amount of energy discharged and

compares between the different number of capacitors. For both

configurations we can see that the discharging process provides

sufficient amount of power and within the 5msec limit needed

to stimulate the neuron. Since the charging process is reliant

on vibration of the piezoelectric nanowires, Fig. 9 presents

the results for variations in the area of the nanowire. There

is no difference in the amount of energy charged when there

are variations in the ultrasonic frequency. However, we can

observe that the quantity of energy produced is increased when

the area is doubled.

V. CONCLUSIONS

The increased attention towards Deep Brain Stimulation

has attracted researchers to search for innovative solutions

that can enable long-term deployment as well as design

of miniaturised devices that can self-generate power. The

emergence of optogenetics has provided a new approach for

precise stimulation at the single neuron level. In this paper,

we propose the wi-opt neural dust that is constructed from

nanoscale components and can be embedded into the cortex

of the brain. A thorough description of the circuitry as well

as the components are presented, including mechanisms of

generating power through ultrasonic wave vibrations. The

paper presented simulation results on the behaviour of optical

light transmission and its effect on the brain tissue, as well

as the energy performance of the device based on variations

of ultrasonic frequencies and circuitry devices (e.g. capacitors

and piezoelectric nanowire area). The positive results from our

simulation study has demonstrated the feasibility of using the

wi-opt neural dust for long term deployments in the brain

in order to stimulate neurons and provide new approaches

for treating neurological diseases so that this study motivates

future work in this direction.

ACKNOWLEDGMENT

This work is supported by the Academy of Finland FiDiPro

(Finnish Distinguished Professor) program, for the project

”Nanocommunication Networks”, 2012-2016, and the Finnish

Academy Research Fellow program under project no. 284531.

This work has also been supported by the European Union

Horizon 2020 CIRCLE project under the grant agreement No.

665564. This publication has also emanated from research

supported in part by a research grant from Science Foundation

Ireland (SFI) and is co-funded under the European Regional

Development Fund under Grant Number 13/RC/2077. This

work was also supported by the U.S. National Science Foun-

dation (NSF) under Grants No. CBET-1445934 and CBET-

1555720.

REFERENCES

[1] X. Han. In vivo application of optogenetics for neural circuit analysis.
ACS chemical neuroscience, 3(8):577–584, 2012.

[2] D. Seo, J. M. Carmena, J. M. Rabaey, E. Alon, and M. M. Maharbiz.
Neural dust: An ultrasonic, low power solution for chronic brain-
machine interfaces. arXiv preprint arXiv:1307.2196, 2013.

[3] V. B. Mountcastle. Perceptual neuroscience: the cerebral cortex.
Harvard University Press, 1998.

[4] S. Song, A. Kim, and B. Ziaie. Omni-directional ultrasonic powering
for millimeter-scale implantable devices. 2015.

[5] R. J. Przybyla, S. E. Shelton, A. Guedes, I. Izyumin, M. H. Kline,
D. Horsley, B. E. Boser, et al. In-air rangefinding with an aln
piezoelectric micromachined ultrasound transducer. Sensors Journal,

IEEE, 11(11):2690–2697, 2011.

[6] M. Kim, J. Kim, and W. Cao. Electromechanical coupling coefficient of
an ultrasonic array element. Journal of applied physics, 99(7):074102,
2006.

[7] P. R. Hoskins, K. Martin, and A. Thrush. Diagnostic ultrasound: physics

and equipment. Cambridge University Press, 2010.

[8] J. M. Jornet and I. F. Akyildiz. Joint energy harvesting and communica-
tion analysis for perpetual wireless nanosensor networks in the terahertz
band. Nanotechnology, IEEE Transactions on, 11(3):570–580, 2012.

[9] M. Beidaghi and C. Wang. Micro-supercapacitors based on interdigital
electrodes of reduced graphene oxide and carbon nanotube composites
with ultrahigh power handling performance. Advanced Functional

Materials, 22(21):4501–4510, 2012.

[10] G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold,
D. Ollig, P. Hegemann, and E. Bamberg. Channelrhodopsin-2, a directly
light-gated cation-selective membrane channel. Proceedings of the

National Academy of Sciences, 100(24):13940–13945, 2003.

[11] T.-i. Kim, J. G. McCall, Y. H. Jung, X. Huang, E. R. Siuda, Y. Li,
J. Song, Y. M. Song, H. A. Pao, R.-H. Kim, et al. Injectable,
cellular-scale optoelectronics with applications for wireless optogenetics.
Science, 340(6129):211–216, 2013.

[12] Cree Inc. Direct Attach DA2432TM LEDs, 2013. Rev A.

[13] M. A. Rossi, V. Go, T. Murphy, Q. Fu, J. Morizio, and H. H. Yin. A
wirelessly controlled implantable led system for deep brain optogenetic
stimulation. Frontiers in integrative neuroscience, 9, 2015.

[14] A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri,
M. B. Schneider, and K. Deisseroth. An optical neural interface: in vivo
control of rodent motor cortex with integrated fiberoptic and optogenetic
technology. Journal of neural engineering, 4(3):S143, 2007.

[15] Z. Wang, L. Wang, Y. Zhang, and X. Chen. Monte carlo simulation of
light propagation in human tissue models. In 2009 3rd International

Conference on Bioinformatics and Biomedical Engineering, pages 1–4.
IEEE, 2009.

[16] G. Yona, N. Meitav, I. Kahn, and S. Shoham. Realistic numerical and
analytical modeling of light scattering in brain tissue for optogenetic
applications. eneuro, pages ENEURO–0059, 2016.

[17] E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth.
Millisecond-timescale, genetically targeted optical control of neural
activity. Nature neuroscience, 8(9):1263–1268, 2005.

[18] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. Neuronal

dynamics: From single neurons to networks and models of cognition.
Cambridge University Press, 2014.

2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom)

The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.The author has requested enhancement of the downloaded file. All in-text references underlined in blue are linked to publications on ResearchGate.


