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ABSTRACT

Terahertz (THz) band (0.1-10 THz) communication is envisioned as a key wireless technology to support faster
and denser wireless networks. However, absorption by water vapor molecules splits the THz band into multiple
transmission windows, each tens to hundreds of Gigahertz (GHz) wide. Because of the broadening of the ab-
sorption lines, the available bandwidth within each transmission window changes drastically with distance. As
a result, a large portion of the bandwidth close to the absorption lines is considered not practical for commu-
nications or, in the best case, practical only for short-range applications. In this paper, chirp spread spectrum
communication is proposed as a way to enable ultra-broadband communication links spanning across absorption
lines in the THz band. More specifically, first, the performance of Chirp-Spread Binary Phase Shift Keying
(CS-BPSK) is analytically derived and compared to that of Binary Chirp Spread Spectrum (BCSS) as well
as non-spread Binary Phase Shift Keying (BPSK). Extensive numerical results based on an analytical channel
model of the THz band are provided to illustrate the performance of the proposed scheme. Finally, experimental
results above conducted in the first absorption-defined window above 1 THz are provided, validating the orig-
inal hypothesis and highlighting the opportunities and challenges in communication across absorption lines at
THz frequencies.

Keywords: Terahertz Communication; Ultra-broadband Modulations; Molecular Absorption; Spread Spec-
trum; Chirp; Experimental Results

1. INTRODUCTION

The demand for wireless data traffic has drastically increased due to the way today’s society creates, shares,
and consumes information. The need to provide wireless data connectivity anywhere and anytime leads to the
generation of tens of exabytes of mobile data traffic per month with billions of mobile devices connected to the
internet.1 The need to provide faster wireless data rates to an ever-increasing number of wirelessly connected
devices due to the boom in the Internet of Things (IoT) industries motivates the quest for untapped spectral
resources. In this context, Terahertz band (0.1–10 THz) communication is envisioned as a key technology to
satisfy the challenge of facilitating faster data rates in denser networks, in both traditional networking paradigms
as well as novel nanoscale communication networks.2–4

For many years, the lack of compact and efficient signal sources, mixers, and detectors have limited the
feasibility of long-range communications in the THz band. With many recent advancements in different THz
device technologies that can operate at room temperature, the so-called THz band technological gap is finally
closing. In the case of frequency up-converting electronic systems, high performance in terms of output power,
noise figure, and efficiency has been demonstrated with III-V semiconductor technology.5–7 In the case of
frequency down-converting photo mixing systems, photodiodes are utilized to generate high power signal at THz
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frequencies.8–10 Moreover, with the recent development of nanomaterial technology such as graphene, novel
plasmonic transceivers and antennas have been demonstrated to intrinsically operate in the THz band.11

While the THz band provides unprecedentedly large bandwidth for wireless communication ranging from
several tens of GHz up to a few THz,12 the challenges introduced by very high propagation losses13 at these
frequencies remain. In addition to the spreading or free-space path loss, another key phenomenon affecting
the propagation of THz-band signals is the absorption by water vapor molecules. The photon energy of THz
signals (from 0.4 meV to 40 meV), while non-ionizing, triggers vibrational-rotational modes in gaseous molecules
(primarily water vapor) that lead to sharp absorption lines across the THz band. For a communication distance
below 1 m, the number of the gaseous molecules found along with the path is low, and the THz band can be
considered as a single transmission window, several THz wide. This substantial bandwidth has motivated the use
of very short pulse-based broadband modulations.14 However, as the distance increases, molecular absorption
becomes non-negligible, and the available bandwidth is split into multiple smaller transmission windows (each tens
to hundreds of GHz wide). Furthermore, as the number of absorbing molecules increases, not only the absorption
loss rises, but the absorption peaks become wider, affecting a larger bandwidth. The phenomenon is known as
the broadening of the absorption lines.13 Therefore, the bandwidth of each transmission window shrinks with
the increasing transmission distance. As a consequence, different innovative modulation and waveform design
techniques have been proposed for distance-dependent absorption-defined transmission windows.15,16

Despite these new modulation techniques, a large amount of bandwidth is wasted across the absorption lines
depending on the operating frequency, distance and channel conditions (such as humidity, temperature and
pressure). Additionally, the channel across the absorption peaks is highly frequency selective. In light of this,
the Chirp Spread Spectrum (CSS) modulation appears as a suitable scheme to support robust communication
in the THz band. Linear chirp signals have been used extensively in radar and sonar applications due to their
correlation characteristics and robustness against doppler and multipath propagation delays.17,18 In wireless
communications, the use of a chirp signal was first proposed by Winkler in 1962.19 Chirp Spread Spectrum has
gained massive recognition in low power wireless communications as the IEEE 802.15.4a standard implements it
as one of two possible physical layers.20 For underwater communication, linear chirp based technology has been
proposed for time/frequency synchronization, channel estimation, and wireless feedback communications.21,22
Furthermore, to reduce the cross-correlation similarity, quasi-orthogonal chirps have been proposed for Multicar-
rier Chirp-Division Multiplexing (MCDM) in underwater networks.23 However, linear chirp modulations cannot
obtain negative cross-correlation coefficients. Due to this limitation, research groups have considered utilizing
nonlinear chirps in forms of third-power function chirps and exponential chirps.24 Though nonlinear chirps can
obtain negative cross-correlation coefficients, increased system complications discourage their use for actual CSS
based systems .25 In the THz regime, application of chirp based technology is currently limited to the THz
imaging and spectroscopy.26,27

In this paper, we investigate CSS schemes able to support multi-Gigabits-per-second (Gbps) communication
links across absorption lines and, thus, maximize the utilization of the THz channel. More specifically, Chirp-
Spread Binary Phase-Shift Keying (CS-BPSK) is proposed to establish wireless links over the absorption peaks,
as a way to enable access to the frequencies that cannot be utilized for communications otherwise. Furthermore,
we compare the performance of the proposed modulation scheme analytically and numerically with traditional
Binary Chirp Spread Spectrum (BCSS) as well as non-spread Binary Phase Shift Keying (BPSK). The idea
behind CS-BPSK is to obtain negative cross-correlation for a better Bit Error Rate (BER) performance and
obtain a robust modulation scheme for communication across the absorption peak by exploiting its frequency
spreading nature. Moreover, to validate our results, we conduct extensive experimental results utilizing the
TeraNova testbed, a state of the art platform for THz communication.

The rest of this paper is organized as follows. In Section 2, we describe the peculiarities of the THz channel
and motivation behind the work. In Section 3, we describe the proposed CS-BPSK modulation scheme and the
fundamental differences when compared to BCSS. We analytically investigate the performance of the proposed
scheme in terms of BER, and compare it with other traditional modulation schemes in Section 4. We provide
experimental results in Section 5 and conclude the paper in Section 6.
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Figure 1: Path loss (left) and absorption loss focused on 988 GHz (right) to demonstrate extent of absorption
band with different distance

2. TERAHERTZ BAND CHANNEL MODEL
The path loss for line-of-sight (LoS) wireless communication links at THz-band frequencies is mainly determined
by the spreading loss and the molecular absorption loss. Analytically, it is represented13 by

PLLOS(f, d) =

(
4πfd

c

)2

ekabs(f)d, (1)

where f is the carrier frequency, d stands for communication distance, c denotes the speed of light in free space,
and kabs is the frequency-dependent absorption coefficient of the medium.

In Figure 1(a), the frequency-dependent path loss in dB is shown for transmission distances of 1 m, 10 m,
and 100 m, for a standard atmosphere with 40% humidity. It is observed that molecular absorption from water
vapor divides the available bandwidth into several transmission windows (w1, w2, w3, ... in Fig. 1). Moreover,
with the increasing distance, the total number of interacting molecules increases, which not only increases the
absorption loss but also leads to broadening of the absorption peaks. In other words, the bandwidth of the
transmission windows shrinks as the length of the wireless link increases.

While there are modulation schemes that try to optimize bandwidth utilization without transmission over
the absorption peaks;15,16 ultimately tens of GHz of bandwidth remain underutilized depending on the distance
and operating frequency. For instance, as shown in Figure 1(b), if the 988 GHz absorption line is considered,
then 10 GHz, 20 GHz, and 40 GHz of bandwidth across it remain underutilized for a wireless link of 1 m, 10 m,
and 100 m, respectively. Therefore, the high absorption loss and frequency selective nature of the absorption
bands, i.e. the band across the absorption lines, motivates the use of CSS based communication systems.

3. CHIRP-SPREAD BINARY PHASE SHIFT KEYING
To maximize channel utilization while minimizing or, at least, upper-bounding the BER, we propose CS-BPSK
for communication across the absorption peaks in the THz band. In this section, we mathematically describe
this modulation scheme and illustrate the waveform structures.

The proposed CS-BPSK is partially related to the concept of CSS and consists in transmitting either an
up-chirp (i.e., signal with increasing frequency sweep) or a down-chirp (i.e., signal with decreasing frequency
sweep). The required phase shift is provided to modulate the symbol according to the bitstream. A symbol
sm(t) is represented by

sm(t) =

√
2

Ts
cos
(
2πf0t− πµ0t

2 + φm

)
, 0 ≤ t ≤ Ts, (2)

where Ts denotes the symbol duration and f0 and µ0 are the initial frequency and the frequency sweep rate,
respectively. When we transmit an up-chirp signal, f0 = fmin and µ0 = − B

Ts
whereas for down-chirp signal
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f0 = fmax and µ0 = B
Ts
, where the bandwidth B of the chirp signal is the difference between the maximum

and the minimum frequencies (fmax − fmin). φm refers to the phase of the mth chirp waveform. For a binary
scheme, m ∈ (1, 2). Here, the value of f0 and µ0 is independent of the bits transmitted, whereas the phase, φm,
is modulated according to the information bits. In our case, the up-chirp signal is utilized. The waveforms s1
for bit “0” and s2 for bit “1” are illustrated in Figure 2(a) and given by

s1(t) =

√
2

Ts
cos

(
2πfmint+ π

B

Ts
t2
)
, (3)

s2(t) =

√
2

Ts
cos

(
2πfmint+ π

B

Ts
t2 + π

)
. (4)

For comparison purposes, the mathematical description of the traditional BCSS is also provided. The BCSS
with linear frequency sweep is given by23

s′m(t) =

√
2

Ts
cos
(
2πfmt− πµmt

2 + φ0

)
, 0 ≤ t ≤ Ts, (5)

where Ts is the symbol duration and φ0 stands for the phase of the symbol. Unlike CS-BPSK, the initial
frequency, fm, consists of minimum frequency and maximum frequency of the IF band (i.e., fm = fmin and
fm = fmax, respectively) depending on the information bits transmitted. Therefore, the frequency sweep, µm,
is comprise of µm = − B

Ts
for up-chirp signal and µm = B

Ts
for down-chirp signal. Here, the up-chirp signal is

utilized to transmit bit “0”, and the down-chirp signal is used to transmit bit “1”, and the corresponding signals
are given by s′1 and s′2, respectively, for the binary scheme. The corresponding waveforms are illustrated in
Figure 2(b) and the symbols are written as

s′1(t) =

√
2

Ts
cos

(
2πfmint+ π

B

Ts
t2
)
, (6)

s′2(t) =

√
2

Ts
cos

(
2πfmaxt− π

B

Ts
t2
)
. (7)
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Figure 2: Waveform for CS-BPSK (left) and BCSS (right) with 20 GHz of bandwidth and 2.5 Gbps of data rate
corresponding to information bit 0 and 1, which are represented by s1 and s2, respectively.

4. BIT ERROR RATE ANALYSIS

In this section, the performance in terms of BER of the proposed CS-BPSK scheme is investigated in the presence
of Additive White Gaussian Noise (AWGN) for wireless communication across absorption bands. The probability
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of error, Pe, for CSS schemes in a flat channel in the presence of AWGN is given by23

Pe = Q

(√
Eb

N0
(1− ρ)

)
, (8)

where ρ is the normalized cross-correlation coefficient between different modulated symbols, Eb stands for the
energy per bit, and N0

2 denotes the noise variance at the receiver. Mathematically, ρ is given by

ρ =
1

Ts

∫ Ts

0

s1(t)s2(t)dt. (9)

Depending on the cross-correlation between the signals, ρ takes a value between -1 to 1, i.e., −1 ≤ ρ ≤ 1. In
the case of CS-BPSK, the phase shift between the frequency spread signals is π (Section 3). Consequently, the
value of ρ is −1, similar to "not spread" BPSK. Thus, the probability of error is given by

Pe = Q

(√
2Eb

N0

)
. (10)

For BCSS, the value of ρ depends on the time-bandwidth product and initial frequency, fm, of the signals.28
In Figure 3, the analytical probability of error in the flat channel is shown. Additionally, a simulated result
(using Matlab) is provided comparing the BPSK, BCSS, and CS-BPSK modulation schemes. The analytical
results match with simulated result closely, thus, validating our system design. It is observable that in the flat
channel BPSK, CS-BPSK has the same probability of error and lower than BCSS.
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Figure 3: Analytical probability of error of BPSK, BCSS and CS-BPSK (left) and simulated (right) probability
of error of above mentioned modulation scheme in AWGN channel.

To examine the performance of the aforesaid modulation schemes across the absorption lines of the THz fre-
quencies, we considered 183 GHz, 380 GHz, and 988 GHz for simulation. The modulated IF signals are up-
converted to one of the absorption lines to measure the BER performance. Due to the broadening of the
absorption lines with distance (as explained in Section 2), different bandwidths are considered for the modula-
tion. At 183 GHz, a bandwidth of 5 GHz is considered for a 250 m wireless communication link and 10 GHz for
a 500 m link. Similarly, we consider 5 GHz and 10 GHz bandwidth for 25 m and 50 m wireless links at 380 GHz,
respectively. Furthermore, to test the performance close to 1 THz, we consider the 988 GHz absorption line.
5 GHz and 10 GHz bandwidths are utilized for 1 m and 2 m wireless links, respectively. Furthermore, for 5 GHz
and 10 GHz systems we consider the data rates as 2.5 Gbps and 5 Gbps respectively. Here, we change the
data rate with bandwidth for a fair comparison with the BPSK. Since for BPSK, the data rate is dependent on
bandwidth, and for CSS, the data rate is independent of bandwidth. The detailed list of parameters used to
conduct the simulation are presented in Table 1.
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Table 1: Simulation parameters.
Carrier frequency and bandwidth consideration

Carrier frequency (GHz) Distance (m) Bandwidth (GHz)
183 250/500 5/10
380 25/50 5/10
988 1/2 5/10

Other parameters
Parameter Value
Humidity 40 %
Temperature 293 Kelvin
Pressure 1 atm
Noise consideration AWGN

In Figure 4, the BER performance of BPSK, BCSS, and CS-BPSK is shown. It is observed that CS-BPSK has
the best performance among the three schemes in the case of communication across the absorption peaks. The
performance of the BCSS is close to BPSK. For CS-BPSK and BCSS, power is spread over the whole bandwidth,
which makes them robust against the frequency selective attenuation across the absorption peaks. However,
for BPSK, the maximum power is centered near the carrier frequency, which results in higher attenuation of
the signal compared to CSS schemes. Therefore, BPSK show little improvement in terms of BER compared to
CS-BPSK and BCSS.

To realize the improvement in BER with the increase in bandwidth for the similar absorption loss at a
particular distance, we considered modulation schemes (CS-BPSK, BCSS, and BPSK) with 5 GHz (2.5 Gbps
data rate), and 20 GHz bandwidth across the 183 GHz absorption line for a 500m long communication link.
It is seen that (Figure 5), with the increase of bandwidth, CS-BPSK and BCSS have significantly lower BER.
However, there is a nominal improvement in the case of BPSK. The results motivate and justify the use of chirp
spread modulation schemes, especially CS-BPSK, over BPSK.

5. EXPERIMENTAL SETUP AND RESULTS

In this section, experimental results are provided by comparing BPSK, BCSS, and CS-BPSK modulation schemes.
The TeraNova testbed29 is utilized for the purpose. In view of the fact that the front-ends are designed to operate
in the first absorption defined transmission window above 1 THz (1-1.05 THz), the experimental results provide
the comparison of the schemes in the band between two absorption peaks.

5.1 TeraNova Testbed
In Figure 6, the TeraNova testbed, and its corresponding block diagrams are described. The testbed is divided
into two parts, namely the hardware components and the software-defined physical layer.

In terms of hardware, on the transmitter side, an analog signal generator (PSG, Keysight E8257D) is utilized
to generate the Local Oscillator (LO) frequency between 41.67 GHz and 43.75 GHz. A custom-designed Schottky-
diode-based chain of frequency multipliers by Virginia Diode Inc. (VDI), is utilized to upconvert the LO to the
radio frequency (RF) between 1 THz and 1.05 THz. At the end, a mixer based on the same technology is utilized
to mix the modulated intermediate frequency (IF) signal generated by a state-of-the-art Arbitrary Waveform
Generator (AWG, Keysight M8196A). The achievable maximum output power is -15 dBm or 30 µW with the
current technology available. On the receiver side, a second PSG and a frequency multiplier chain with a mixer
based on the similar technology is utilized to down-convert the received RF frequency to the IF band. A state-
of-the-art Digital Storage Oscilloscope (DSO, Keysight DSOZ632A) is utilized to digitize, visualize, and store
the received signals for further processing.

The software-defined physical layer is used to implement the pre and post signal processing blocks in the
software domain using MATLAB for the transmitter and the receiver module, respectively. In the transmitter,
the user-provided data bits are encapsulated into frames. The header and the training sequence are added to the
data bits to structure the frame. As a header, a 18-bit-long maximal merit factor (MF) sequence, with optimal
correlation properties, is utilized to detect the beginning of a new frame. The training sequence (up to 20 % of
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Figure 4: BER for the three modulation schemes under analysis (BPSK, BCSS and CS-BPSK) with different
bandwidth (5 GHz and 10 GHz) and over different absorption lines (183 GHz, 380 GHz and 988 GHz) and
distances (1m, 2m, 25m, 50m, 250m and 500m).
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Figure 5: BER performance of BPSK, BCSS, and CS-BPSK across 183 GHz absorption line at the distance of
500 m with the bandwidth of 5 GHz (2.5 Gbps data rate) and 20 GHz (10 Gbps data rate).

Figure 6: The Teranova testbed (top); schematic diagram of the TeraNova hardware components (middle); and
diagram of the software-defined physical layer (bottom) for transceiver system.
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data bits) accommodates the bits known to the receiver and is utilized to estimate the channel and equalize the
received signal. The generated frames are then passed through the "Modulation" block to modulated the bits
according to the different modulation schemes. The "Pulse shaping" block makes use of the raised cosine pulse
filter to restrict the signal within the limit of the bandwidth. Furthermore, to compensate constant frequency
selective response of the hardware components "Pre-equalization" filter is utilized.

In the receiver, after capturing the IF signal in DSO, the signal is filtered to eliminate band noise from the
captured signal. A Chebyshev bandpass filter (based on Parks-McClellan-algorithm) is utilized for the purpose.
Subsequently, the frame is synchronized to detect the starting point of the captured signal using the known
MF sequence, which is essential for further equalization and correct detection of the bits. Within the "Post-
equalization" block, a linear filter equalizer with minimum mean square error (MMSE) statistics is utilized
to mitigate the effect of ISI, frequency selective nature of the channel, and path loss. The error between the
transmitted training symbols, ŝ, and output of the post-equalizer, Rf̂ , is minimized to get the filter coefficient
vector f̂ . Where R is the Toeplitz matrix with the received training symbols of dimension. To detect the data
bits, the equalized signal are passed through "Demodulation" block. A maximum likelihood (ML) criterion based
correlator-type detector is utilized to recover the data bits and given by,

m̂ = arg max
1≤m≤M

(∫ T

0

r(t)xm(t)dt− 1

2
||xm||2

)
, (11)

where m̂ denotes the maximum match with a particular symbol and m=1,2,. . . . M. M is the modulation index.
r represents the received symbol. For the purpose of matching, all possible symbols xm are generated after
convolving with raised cosine pulse.

5.2 Experimental Results
In order to check the experimental BER performance of the BPSK, BCSS, and CS-BPSK schemes and compare
them at true THz frequencies, the modulated IF signals are up-converted to 1.03 THz. In this case, IF modulated
signals of 5 GHz and 10 GHz bandwidth are considered with varying distances up to 30 cm. In Table 2, we
summarize the results of different schemes when increasing the communication distance. To calculate the BER,
ten-frames are considered (each 1,200 bits long).

It is observable that CS-BPSK has the lowest BER, i.e., the best performance, followed by BPSK and BCSS. It
is because of the frequency selective nature of the end-to-end channel due to components (cables, connectors, and
front-ends). However, the bandwidth leakage is higher for the CS-BPSK and BCSS modulation schemes, which
requires the increased guard band for multi-access communication system design. Unlike BPSK, the bandwidth
of the CS-BPSK and BCSS modulation schemes is independent of the symbol duration, which leverages the
use of a higher bandwidth signal for better performance in terms of BER. In other words, by increasing the
bandwidth and keeping the symbol rate same, we can decrease the BER and create a more robust modulation
scheme for the communication across the absorption peaks.

6. CONCLUSION

In this paper, we proposed the CSS scheme for communication across the absorption peaks of the THz Band
to overcome the high path-loss and the frequency selectivity of the channel. We studied the performance of
CS-BPSK and BCSS both analytically and numerically, in the presence of AWGN flat channel and across the
different absorption peaks. The TeraNova testbed is utilized to experimentally demonstrate the BER at various
distance. We observed that CS-BPSK outperforms the traditional BCSS and BPSK in terms of BER. Moreover,
the bandwidth of the CS-BPSK and BCSS modulation schemes is independent of its symbol duration, which in
our case can be leveraged to trade higher bandwidth for lower BER. Hence, the proposed modulation technique
sparks interest in reliable long-range communications across the absorption peaks of the THz band. In future, we
can extend this work in the direction of multiple-array modulation(i.e, CS-MPSK) and formulate an optimization
problem to determine the spread of the bandwidth and data-rate to maintain the required BER.
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Table 2: Measured BER for different modulation schemes.
BPSK

BW(GHz)/Bit rate(Gbps) Distance(cm) SNR(dB) BER

5 / 2.5

5 13.4 0
10 8.7 0
15 4.5 2.5× 10−3

20 2.5 1× 10−2

25 0.4 7.8× 10−2

30 -0.8 9× 10−2

10 / 5

5 11.5 0
10 6.8 1.6× 10−3

15 2.6 3× 10−2

20 0.8 7× 10−2

25 -0.5 1.7× 10−1

30 -1.9 2.5× 10−1

BCSS
BW(GHz)/Bit rate(Gbps) Distance(cm) SNR(dB) BER

5 / 2.5

5 12.5 0
10 7.7 8.4× 10−4

15 3.9 6× 10−3

20 2.5 2.5× 10−2

25 1.2 9.2× 10−2

30 -0.5 1.2× 10−1

10 / 5

5 11 0
10 6.1 4.1× 10−3

15 3.1 4.4× 10−2

20 1.2 1× 10−1

25 0.2 1.8× 10−1

30 -1.5 2.4× 10−1

CS-BPSK
BW(GHz)/Bit rate(Gbps) Distance(cm) SNR(dB) BER

5 / 2.5

5 12.7 0
10 7.5 0
15 4.5 1.6× 10−3

20 2.8 1.4× 10−2

25 1.5 5.2× 10−2

30 0.1 8.4× 10−2

10 / 5

5 11.7 0
10 6 0
15 3.4 1.9× 10−2

20 1.5 4.7× 10−2

25 0.2 1.2× 10−1

30 -1.9 1.6× 10−1
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