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ABSTRACT
Graphene’s ability to support surface plasmon polaritons (SPPs)
is of particular interest in the design of nanoscale plasmonic an-
tennas. Since a dielectric–conductor interface is required to excite
and sustain SPPs, a negative dielectric function becomes a defin-
ing property for graphene. We use terahertz time-domain spec-
troscopy (THz–TDS) to determine the complex dielectric function
of graphene based on the extracted complex conductivity. These
optical properties help us ascertain if a graphene sample is capable
of supporting plasmons, and the appropriate dimensions to define
a resonant cavity that would act as an antenna in the THz range.
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1 INTRODUCTION
As wireless networking technologies continue to advance, our de-
vices and systems are becoming more interconnected. At the same
time, advances in materials science and nanotechnology are making
possible increasingly smaller components with advanced functional-
ity. Integrating these nanoscale components with an ever-evolving
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Figure 1: (Top) Ray diagram for THz light incident on
the graphene-on-substrate system. (Bottom) Measured THz
pulses corresponding to interface reflections.

network is expected to lead to an Internet ofNano-Things [1], which
has the potential to revolutionize how we live and work.

Graphene boasts a long list of impressive physical properties [2].
Among these is the ability to support collective charge oscillations,
known as surface plasmons, at a graphene–dielectric interface [3].
These surface plasmons can couple to electromagnetic (EM) waves,
forming surface plasmon polaritons that strongly confine the free-
space EM wave at the interface. Appropriate graphene dimensions
would thus define a resonant cavity that should act as a plasmonic
antenna in the THz range [5].

In this work, we use terahertz time-domain spectroscopy (THz–
TDS) to extract the complex optical properties of CVD-grown
graphene transferred onto an undoped silicon substrate. We do
this by analyzing the light–matter interactions induced by pico-
second pulses of THz light at the substrate–graphene interface as
shown in Fig. 1. We measure a time-domain signal consisting of
two pulses corresponding to the reflection at each interface. This
is shown at the bottom of Fig. 1. We use a Hann window function
centered at the peak of each pulse to separate the signal into two
parts (red/blue in Fig. 1). We can then define a transfer function, H̃ ,
using the echo pulse as the output and the main pulse as the input.
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Figure 2: Extracted optical properties of graphene

2 THZ ANALYSIS AND CHARACTERIZATION
Our self-referenced measurement setup yields the reference sub-
strate optical properties, ñs = ns − jκs, in a single step through the
transfer function equation defined below:

H̃ =
|Ẽ2 |
|Ẽ1 |

exp
(−j[ϕ2 − ϕ1]

)
(1)

Based on an approach similar to [4], we calculate the Fresnel reflec-
tion coefficient at the substrate–graphene–air interface as follows:

R̃sga = H̃g
R̃as

T̃asT̃sa
exp

(
j
ω

c
2ñsLs cosθt

)
(2)

We then extract the complex conductivity [8] using the equation:

σ̃ =
1
Z0

[(
1 − R̃sga

1 + R̃sga

)
ñs

cosθt
− 1
cosθi

]
(3)

Based on Maxwell’s equations, the complex dielectric function is

ϵ̃ = ϵ0 + j
σ̃

ω
= ϵ0 − Im[σ̃ ]

ω
+ j

Re[σ̃ ]
ω

(4)

Since the real part of the dielectric function is related to the imagi-
nary part of the complex conductivity, we fit our data, as shown in
Fig. 2, using the Kubo formalism defined below, which is commonly
used to model the intra-band surface conductivity of graphene [7].

σ̃ =
τ

1 − jωτ

(
2e2

πℏ2
kBT

[
2 cosh

(
EF
2kBT

)])
(5)

Here the Fermi energy of graphene is given by

EF =
πℏ2

e2
σdc
τ

(6)

in which σdc is the dc conductivity and τ is the scattering time.

3 RESULTS
Based on the fitting to the Kubo formalism, we extracted the electri-
cal parameters given in Table 1. We used the COMSOLMultiphysics
platform to solve Eqs. (4) and (5) and simulate the electric field in-
side a graphene patch antenna. Figure 3a uses a calculated value of
the scattering time [6], which shows the electric field of the surface
plasmon being able to traverse the entire length of the patch. On

Table 1: Electrical parameters of graphene

Parameter Symbol Value
dc conductivity σdc 1.3mS
Scattering time τ 31.5 fs
Fermi energy EF 0.35 eV
Carrier density N 1.4 × 1013 cm−2
Carrier mobility µ 576 cm2 V−1 s−1
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Figure 3: Electric field simulations for plasmon excitation in
graphene patch antenna for different scattering times.

the other hand, Fig. 3b shows that if the extracted value of τ is used,
then the electric field of the surface plasmon decays very quickly.
A distinct advantage of THz–TDS over traditional electrical mea-
surements is that, due to its non-contact nature, there is no risk of
influencing or compromising the sample during measurement.

4 CONCLUSION
Here we report THz–TDS to be a robust optical and electrical char-
acterization method for graphene, especially for applications in-
volving plasmonic antennas. The clear difference seen in running
simulations using predicted, or theoretical, values versus real-world
values accentuates the importance of obtaining graphene parame-
ters under real-world conditions to guide antenna design and better
evaluate expected performance.
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