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Abstract—CubeSats, a type of miniaturized satellites with the
benefits of low cost and short deployment cycle, are envisioned as
a promising solution for future satellite communication networks.
Currently, CubeSats communicate only with ground stations
under limited spectrum resources and at low data rates, whereas
with growing launches of CubeSats and more diverse services ex-
pected every year, novel communication techniques and resource
allocation schemes should be investigated. In this paper, a multi-
objective resource allocation strategy is designed based on deep
learning algorithms for autonomous operation in CubeSats across
millimeter wave (60–300 GHz) and Terahertz band (300 GHz–
1 THz) frequencies with the utilization of reconfigurable plas-
monic reflectarrays. Simulation results demonstrate the inter-
satellite links can achieve multi-gigabits-per-second throughput
and ground-to-satellite links with more than 10 times of capacity
enhancements in realistic channel conditions.

Index Terms—CubeSats, Satellite Communications, Millimeter
wave, Terahertz band, Metasurfaces, Graphene, Deep Learning

I. INTRODUCTION

In recent decades, the scope of the Internet of Things
(IoT) has advanced in numerous vertical markets ranging from
healthcare, cargo transportation, autonomous driving, among
others. Existing IoT networks mainly rely on terrestrial cellular
networks to accommodate enormous data traffic around the
globe. New standards have been developed to address the
ever-increasing demands of services and devices, for instance,
the narrowband IoT [1]. Nonetheless, many constraints still
impede the overall performance of the IoT, including extending
services to places without infrastructure (either damaged or
non-existent), combining a multitude of data types, including
satellite imagery, asset tracking, and so on. For this, a new
paradigm of IoT is necessary to tackle those problems.

With advantages in low cost and short production cycle,
nano-satellites are burgeoning in commercial use of space
such as Earth sensing, imaging, asset tracking, among others.
Recent technical advancement in nano-satellites has attracted
significant attention on their potentials to compose the Internet
of Space Things (IoST), where the dimension of IoT is
stretched to encompass the nano-satellites, aircraft, and space-
craft for connectivity. Among various configurations of nano-
satellites, CubeSats, which were originally used for university
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education and research, have been deployed for services in
low Earth orbit (LEO) including Earth remote sensing, weather
forecasting, and machine-to-machine communication [2]. For
instance, Planet Labs has launched a total of 175 CubeSats to
support high-resolution Earth imaging services. CubeSats are
also deployed in deep space for missions including interplane-
tary data relaying, sensing and monitoring on the Moon, Mars,
and several asteroids, as well as even further in deep space. For
example, the Mars Cube One (MarCO) mission from NASA
consists of a pair of CubeSats aimed at the exploration of
Mars. More promising CubeSat missions including interplan-
etary CubeSats will be enabled with future advancements in
physics, electronics, and telecommunications [3].

The radio frequency (RF) bands utilized in conventional
satellite communications include the L-band (1–2 GHz), S-
band (2–4 GHz), C-band (4–8 GHz), X-band (8–12 GHz),
Ku-band (12–18 GHz), K-band (18–27 GHz), and Ka-band
(26.5–40 GHz). These frequency bands are being heavily
utilized which can cause severe interference and thus degrade
system performance. Therefore, with very limited bandwidth
resources, existing CubeSats can only support very low data
rates of up to a few kilobits-per-second, which set an extremely
high delay and significantly impact the performance of satellite
communication networks and, ultimately, would impact the
performance of the IoST. Hence, innovative transceiver as well
as antenna technologies should be investigated for new satellite
link viabilities. Recently, NASA has initiated the development
of an integrated solar reflectarray antennas operating at the
Ka-band in CubeSats to push for downlink data rates to 100-
Mbps [4]. Reflectarrays can be patched to the solar panels in
CubeSats for easy folding. In parallel, the possibility to utilize
the terahertz (THz) band for inter-satellite communication has
been recently proposed [5]. THz-band frequencies offer the
advantages of more abundant spectrum resource and a better
tolerance of signal beam misalignment. We envision that future
CubeSats should equip with the multi-band connectivity across
microwave, millimeter wave, THz band, and optical frequen-
cies, which requires new transceivers and antenna systems
design. In this direction, we proposed our solution of a hybrid
electronics-photonics-based transceiver design and the plasmic
reflectarrays to realize reconfigurable antenna patterns [6].

To accommodate different levels of data link requests among
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end-users and multiple CubeSats, the diversity of available
resources, including different frequency bands, distinct band-
widths, various antenna patterns, among others, makes re-
source allocation a very relevant challenge. Traditional ap-
proaches based on the use on-the-ground centralized decisions
are not adequate because of the very long propagation delay
associated to ground-to-satellite and satellite-to-satellite links.
Similarly, preplanned resource allocation cannot cope with
the dynamic communication needs of the IoST. Moreover,
realistic satellite communication channel conditions require an
adaptive solution to mitigate the significant Doppler shift and
compensate the heavy rain fade.

In this paper, we develop and investigate the performance
of a new resource allocation scheme based on deep learning
algorithms especially suitable for dynamic system deployment.
The contributions of this work are three-fold. First, we propose
a multi-objective resource allocation scheme based on an
ensemble deep neural network and, considering the limited
energy and computation budget in CubeSats, instead of using
classic backpropagation algorithm to calculate weight of each
neuron, we utilitize random hill-climbing algorithm to adjust
weights of neurons. Second, for the ground-to-satellite links,
we examine the influence of Doppler shift due to movements
of CubeSats and treat the factor as one of the features in our
deep neural network. This enables CubeSats the capability to
transmit and receive between others in different orbits, albeit
the relatively high motions. Third, our design is based on the
actual operational environment with real satellite trajectory
data of the Iridium NEXT and simulate the satellite commu-
nication channel considering various atmospheric conditions.

The rest of the paper is organized as follows. In Sec. II,
the main functioning components in CubeSats and its com-
munication subsystem are introduced. In Sec. III, the dynamic
resource allocation scheme based on deep learning algorithms
is described. In Sec. IV, the numerical results based on
simulation and performance analysis are given. Finally, the
conclusion is drawn in Sec. V.

II. SYSTEM MODEL

In the IoST, the CubeSats orbiting the Earth form a network
in the space segment, while the links between the CubeSats
and the ground stations define the ground segment, as shown in
Fig. 1. In this section, we first describe the general architecture
of CubeSats and then focus on our recently-proposed multi-
band communication system in next generation CubeSats.

A. General Architecture of CubeSats

CubeSats have standardized sizes denoted as 1U, 2U, 3U,
and so on, where a “U” means a 10×10×10 cm3 cube to fit the
secondary payload slots in launch vehicles. The structure of a
CubeSat follows specifications by NASA, the Joint Space Op-
erations Center (JSpOC), and other space agencies worldwide.
A CubeSat contains the following subsystems to maintain
basic operations: i) an electrical power subsystem providing
energy source; ii) a command and data handling subsystem
which controls configurations; iii) an attitude determination

Ground Segment

GSL
ISL

Space Segment

CubeSats

Ground
Stations

Fig. 1. A diagram of CubeSat links. The links between space and ground
segment are ground-to-satellite links (GSLs) and the links among CubeSats
are inter-satellite links (ISLs).

and control subsystem managing positions of CubeSats and
antenna pointing accuracy; iv) a payload subsystem carrying
sensing and imaging devices such as cameras, spectrometers,
telescopes, and so on; and v) a communication subsystem
which transmits and receives data to and from ground sta-
tions and other CubeSats. A more detailed description of the
CubeSat architecture can be found in [6].

B. Multi-band Transceivers of CubeSats

Beside the aforementioned frequency bands deployed for
conventional satellite communications in Sec. I, recently, free
space optical (FSO) communication has also drawn notable
attention as a candidate technique for CubeSat communica-
tions [3]. The FSO has the advantages of small aperture size
and high throughput, but requires stringent beam matching at
transceivers. On the other hand, millimeter wave (mm-wave)
and terahertz (THz) band have less strict requirements on
beam alignment and still offer abundant spectrum resources.
In our proposed CubeSats, the communication subsystem will
employ a multi-band communication subsystem with capabil-
ities to dynamically allocate spectrum and power resources
corresponding to specific channel conditions.

The communication subsystem is aimed to transmit and
receive signals from ground stations, UAVs, and neighbor-
ing satellites, hence it incorporates multi-band transceivers
and antenna arrays needed to support high-throughput inter-
satellite and ground-satellite links from RF to THz to FSO. To
fulfill the task, we have designed a hybrid integration of two
complementary signal generation and modulation approaches,
namely, an electronics-based approach and a photonics-based
approach. In this paper, we focus on the design of algorithms
which can dynamically change the operating frequency and
transmit power as the resource allocation scheme of the multi-
band communication subsystem of CubeSat. As for the process
of multi-band signal generation, readers can refer to the details
of this complimentary approach in [6].

C. Multi-band Reconfigurable Antenna Array

Plasmonic reflectarray antennas can efficiently radiate at the
target resonant frequency while being much smaller than the
corresponding wavelength [7], [8]. This peculiar character has
allowed them to be integrated in very compact sizes, much
denser than traditional antenna arrays. In our previous works,
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TABLE I
ORBITAL AND COMMUNICATION LINK PARAMETERS (BASED ON THE IRIDIUM NEXT CONSTELLATION)

Notation Parameter Value Range
n
(k)
s Number of CubeSats in the k-th orbit 11
K Total number of orbits 6

n
(k,l)
0 Mean motion of the l-th CubeSat in the k-th orbit [Revolutions per day] [14.33, 16.54]
e
(k,l)
0 Eccentricity [0, 0.0241]
E

(k,l)
0 Eccentricity anomaly [deg] [3.12, 356.74]
i
(k,l)
0 Inclination angle [deg] 86.4

M
(k,l)
0 Mean anomaly [deg] [22.82, 345.27]

α
(k,l)
0 Semi-major axis [km] [6507.3, 7157.8]

ι
(k,k′,l)
0 Arc-length distance between two neighboring satellites in the same orbit [km] [204.2, 230.8]
R Rain rate [mm/hr] [0.1, 16]
T Temperature [Kelvin] [290, 1500]

Γmin Minimum require link throughput [Mbps] [0.512, 1.5]

THz plasmonic patch

Mm-wave 
plasmonic resonator

Solar Panels of CubeSats

Fig. 2. A diagram of a multi-band reconfigurable antenna array which can
be mounted on the back of CubeSats’ extendable solar panels.

we have demonstrate that graphene can be used to build nano-
antennas with maximum dimension λ/20, allowing them to be
densely integrated in very small footprints (1024 elements in
less than 1 mm2) [7] and that graphene-based plasmonic nano-
antenna arrays can enable multi-band communications with
a suppressed mutual coupling effect [9]. However, graphene
does not perform well at millimeter wave bands. Instead,
we consider to incorporate metasurfaces into the plasmonic
transmit-receive arrays. Metasurfaces, the 2D representation
of metamaterials, have been well studied from the perspective
of material science and technology [10].

To meet the size specification of CubeSats, the plasmonic
reflectarrays can be deployed freely in the 3D environment,
with a size ranging from 1 mm2 to 100 mm2 depending
on the operating frequency (mm-wave/THz-band) equipped
with hundreds or thousands of plasmonic antenna elements,
as shown in Fig. 2. Owing to the sub-wavelength size of their
elements, the plasmonic reflectarrays are able to reflect signals
in non-conventional ways, which include controlled reflections
in non-specular directions as well as reflections with polariza-
tion conversion [11]. In order to adapt to dynamic frequency
operation in CubeSat links and allocate multiple beams to
serve multiple sensing or data forwarding tasks, we can control
the aperture of plasmonic reflectarray antenna through folding,
splitting, or combining its subarrays. Hence, the directivity of
plasmonic reflectarray antenna, can be expressed as a function

of the tunable aperture, D(k,l,x) = 4πA
(k,l,x)
e /λ2η

(k,l,x)
e ,

in which (·)(k,l,x) represents the variable used by the l-th
CubeSat in the k-th orbit for the x-th task. In later sections we
also follow the same format to define orbital and link variables.

On the basis of multi-band signal generation, the multi-band
communication system will utilize electronically-controlled
frequency-tunable antenna arrays, by leveraging the tunability
of plasmonic antennas. In particular, one of the relevant
properties of graphene-based plasmonic nano-antennas is the
possibility to change their resonant frequency by utilizing a
small voltage to modify their Fermi energy [7]. The possibility
to tune an antenna (or group of antennas) at different fre-
quencies without any mechanical modification (as opposed to
other multi-band antenna arrays that utilize MEMS or NEMS
to create origami type structures [12]) enables beamforming
not only across space but also across frequencies.

D. The Two-Line Element Orbital Data

In order to examine the feasibility for inter-satellite links,
we need to accurately estimate the positions and mobility of
CubeSats. In record of the trajectory information for Earth-
orbiting objects, the two-line element (TLE) set is used for
all current satellites and is available to public [13]. In TLE,
the following key trajectory parameters can be extracted or
derived based on simplified perturbation models and utilized
as reference for our CubeSat design and simulation: epoch,
eccentricities, inclinations, mean anomalies, mean motions,
altitudes, velocities, among others, as shown in Table I. In
our deep neural network, we derive link budget parameters
and rely on these orbital statistics to determine the desired
frequency bands and power levels for our proposed CubeSat
communication links.

In our work, we collected the orbital data of the entire
set of 66 Iridium NEXT satellites from the TLE dataset
ranging from January 1 to 30, 2019, which corresponds to
approximately 675,000 samples with eight input features.
To calculate the inter-satellite arc-length distances for ISLs,
we extract the mean anomaly M0 and eccentricity e0 to
iteratively solve for the eccentricity anomaly E0 within a small
calculation error (i.e., e−10) based on the Kepler’s equation
M0 = E0 − e0 sinE0. Then by assuming the same orbit
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speed v, we can calculate the arc-length distance between two
satellites based on their respective times to the periapsis as

ι = v [(t1 − tp)− (t2 − tp)]

= v

√
α3

0

µ
[(E1 − e1 sinE1)− (E2 − e2 sinE2)] ,

(1)

in which µ is the standard gravitational parameter for the Earth
and α0 is the semi-major axis for the orbit.

III. MULTI-BAND COMMUNICATION AND RESOURCE
ALLOCATION SCHEME

While CubeSats perform sensing and monitoring tasks, the
data generated should be efficiently transmitted to ground
stations and task commands should be received with minimum
delay. The goal of multi-band communication for CubeSat
networks is to maximize the link throughput, minimize the
delay, and mitigate any possible interference from other links.
However, several environment factors should be characterized,
including rain fading and fast Doppler shift.

A. Influence of Weather on CubeSat Multi-Band Links

In satellite communication scenarios, space and atmospheric
weather has non-negligible effects on the survivability of
GSLs [14]. Among them, rain fading plays a crucial role.
According to the ITU’s recommendation, it is demonstrated
that the rain attenuation is a function of the communication
frequency fc, rain rate R, and two polarization-specific coef-
ficients, k and α, which form a relationship as follows,

log γR = log k + α logR,

=
4∑
j=1

(
aj exp

[
−
(

log fc − bj
cj

)2
])

+mk log fc

+ ck + logR

 5∑
j=1

(
aj exp

[
−
(

log fc − bj
cj

)2
])

+mα log fc + cα

]
,

(2)

in which aj , bj , cj , mk, and ck are coefficients dependent on
frequency and polarization conditions [15]. We can hence ac-
curately capture the attenuation caused by the water molecules
at frequencies up to 1 THz in GSLs. When a ground station
needs to connect to a CubeSat or vice versa, the power budget
takes into account the rain fade at the intended frequency.

B. Influence of Doppler Shifts on CubeSat Multi-Band Links

Unlike most terrestrial communication scenarios, satellites
are in constant orbital movements. Even though we can treat
the arc-length distance between two adjacent CubeSats in the
same orbit as an approximately stable value, the Doppler
effect in GSLs cannot be neglected. When the beacon signals
at frequency sent from a CubeSat received by the ground
station, the receiver should determine if it needs to connect to
this CubeSat the as a prograde movement leads to a higher

receiving frequency and a retrograde movement leads to a
lower one, based on the measured Doppler frequency fD, such
that we have a channel with coherence time Tc as

arg max
fD

Tc(fD) =

{
fD |

9

16πfD
≤ Tc ≤

√
9

16πf2
D

}
. (3)

Hence, in our GSL modeling, we also take into account the
adaptive Doppler shift compensation in the spectrum resource
allocation scheme.

C. Multi-Objective Optimization Problem Formulation

We consider a four-tuple parameter set for resource allo-
cation, which includes the transmit power Pt, the bandwidth
Wb, the center frequency fc, and the directivity of plasmonic
reflectarray antennas Dt. We can formulate an optimization
problem in the following form,

Given: n(k)
s ,K, n

(k,l)
0 , e

(k,l)
0 , i

(k,l)
0 ,M

(k,l)
0 , α

(k,l)
0 ,

Γ
(x)
min,BER

(x)
min, P

(k,l)
res , fc,Wb, γR. (4)

Find: P (k,l,x)
t , f (k,l,x)

c ,W
(k,l,x)
b , D(k,l,x). (5)

Objectives: max
∑

Γ(k,l,x),min
∑

P (k,k̄)
r ,

min
∑

τ (x). (6)

Subject to:
∑

P
(k,l,x)
t ≤ P tot

t (Transmit power allocation),
(7)∑

n(k,l,x)
s ≤ N tot

s (CubeSat allocation), (8)∑
D(k,l,x) ≤ D(k,l) (Antenna array allocation),

(9)

Γ
(
P

(k,l,x)
t , n(k,l,x)

s , D(k,l,x)
)
≥ Γ

(x)
min,

∀k ∈ K and ∀l ∈ Lorb. (10)

We can observe that this problem is a combinatorial opti-
mization problem which cannot be easily solved. Therefore,
we seek help from machine learning techniques which have
recently burgeoned for communication network use cases.

D. Resource Allocation Optimization via DNN

In the field of machine learning, deep learning has recently
gained significantly promising results in tackling complicated
wireless network problems with large data volumes [16]. It is
fair to believe that future wireless communication networks
will be more intelligent with the utilization of deep learning
techniques. In the space network, we also face the challenges
of handling, processing, and transmitting sheer amount of data
amongst CubeSats and ground stations in complicated space
channels. Lacking real-time knowledge of CubeSat orbital
conditions and only having centralized control stations on the
Earth will not only hinder prompt data handling, but also
often yield undesirable end-to-end throughput. The resource
allocation scheme is resulted from a deep neural network
(DNN) that aims to optimize the frequency bands, transmitted
power levels, as well as adjust the radiation patterns of
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Fig. 3. Architecture of the deep neural network for CubeSat links. Five layers
of neurons are connected to process the input feature space Ω.

reconfigurable antenna arrays. Since the optimization targets
are independent of each other, we can train an ensemble deep
neural network with each finding the global optimum of the
specific goal.

In classic DNN architectures, each neuron connected
through multiple layers has a certain associated weight which
is determined by the algorithm called backpropagation [17].
Backpropagation relies on calculating the gradient of the loss
function in order to adjust the initial weights of neurons, which
has been proved to be an efficient solution to find the global
optima. However, in scenarios where computation complexity
and energy consumption become major constraints in employ-
ing backpropagtion for finding optimal weights, other efficient
yet less energy-draining methods should be considered. In
particular, randomized optimization algorithms are preferable
candidates in the CubeSat communication network.

Random hill-climbing (RHC) algorithm finds the “peak”
value among all values in the “landscape” by comparing
the current value with the one in previous step. It has the
advantages of low memory requirement as well as low time
complexity, compared to neural networks with backpropaga-
tion and other optimization methods including the genetic
algorithm and simulated annealing. The initial step is randomly
chosen. Then a modification is made in the next step and
comparison is performed with the previous one: if current step
yields a better solution, then we accept it as the temporary
solution, and continue moving along the same direction as
well as making comparison with next steps; if current step
does not outperform the previous one, then we discard it and
suggest a new value, or “restart” the research for the local
optimal solution. After some iterations, the number of which
is predetermined, or the improvement is not significant, the
algorithm will stop.

In the CubeSat network, with the intrinsic characteristics
of limited power and on-board memory budget, we apply
random hill climbing algorithm in the DNN in place of the
backpropagation. In our DNN, as shown in Fig. 3, we first
construct the input feature space Ω, which is a matrix with the
following quantized column vectors based on the real orbital
data from the Iridium,

Ω = [ι, γR, fD, T,Γmin,BERmin, f (all)
c ,W

(all)
b ]ᵀ. (11)

We then employ the sigmoid function as the activation function
in this DNN, which is expressed as hθ(Ω) = 1

1+exp(−θᵀΩ) .

20 25 30 35 40 45 50 55 60

Eb/No (dB)

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

B
E

R

Bit Error Rate in Ground-Statellite Links with 

Various Rain Rates Under Iridium NEXT Constellation

Without Dynamic Resource Allocation

With DNN-Based Dynamic Resource Allocation

Fig. 4. BER performance in GSLs at different rain fading scenarios.

0 1 2 3 4 5 6 7 8 9

10
7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF of Throughput of ISL and GSL with Iridium NEXT Constellation 

ISL at 240 GHz with 20 GHz bandwidth

GSL uplink at 77 GHz with 2 GHz bandwidth

GSL downlink at 77 GHz with 2 GHz bandwidth

GSL downlink at 19.4~19.6 GHz with 15 MHz in each channel

ISL at 22.18~22.38 GHz with 21.6 MHz each channel

Fig. 5. Comparison of the CDF of throughput with existing Iridium NEXT
frequencies and proposed mm-wave/THz dynamic resource allocation scheme.

We then construct a multi-class classification output as y =
hθ(Ω) ∈ RS , in which S is the size of the output units, or the
number of classes. The output units are column vectors each
with all elements to be 0 except one element has a value of “1”
indicating the classified output. In each deep neural network in
our ensemble structure, we have four layers, and the number of
hidden neurons in the layers are [75, 50, 30, 12, 6]. The output
is corresponding to the indicator value which points to the
selected frequency bands, transmitted power level, and values
of directivity of antenna array. In the training data, we split
the training dataset into 80% and 20% as the training and the
validation set to perform cross-validation on the weights. The
numerical results on link performance based on the selected
parameters are drawn in the following section.

In the perspective of actual deployment, recent advance-
ments have been made available in industry to ensure ultra-
low power consumption and miniaturized size for neural
computation hardware. For example, the Movidius technology
developed by Intel is the miniaturized neural compute engine
which can ignite the future deployment of deep neural network
at very low power consumption, implying a good fit for low
power budget in CubeSats.

IV. RESULTS AND ANALYSIS

Based on the DNN we constructed and trained with inputs
based on the real orbital data from Iridium NEXT constel-
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lation, we can perform testing using the connected neurons
with weights found by random hill-climbing technique. In our
simulated satellite communication scenarios, a pair of fixed
end-users are on the ground with two locations on the east
and west hemisphere and hence rely on the satellite network
for communications. Therefore in the end-to-end link path
which consists of a GSL uplink, multiple ISLs, and a GSL
downlink, we compare the performance in terms of i) bit
error rates (BERs) given selected values of transmitted power
and antenna array gain (i.e., directivity), ii) the achievable
throughput values with various link distance (e.g., the arc-
length distance in ISLs and line-of-sight distance in GSLs),
and iii) the maximum throughput CubeSat network can achieve
by using the dynamic resource allocation scheme in ISLs.

In both the GSL and ISL data links, we apply the forward
error correction with the BCH(63, 39, 4) coding scheme and
QPSK is used as the modulation scheme. We send a packet
with a total length of 1500 bytes. According to the Iridium
NEXT constellation, the frequency bands for ISL spans eight
channels in 22.18–22.38 GHz, each with a 21.6 MHz band-
width, the feeder uplink has 13 channels in 29.1–29.3 GHz
and downlink has 13 channels in 19.4–19.6 GHz, each with
approximately 15.3 MHz bandwidth. In our proposed CubeSat
links, the candidate frequency bands for ISL include 60, 140,
240, 300, and 420 GHz and for GSL 77 and 120 GHz. As
shown in Fig. 4, various rain rates cause different level of
link degradation without applying dynamic resource alloca-
tion. Each sample represents an actual GSL with a longitude
ranging near poles (with the best BER) and equator (with the
lowest BER). Using dynamic bandwidth and transmit power
allocation, the BER performance near the equator improves
significantly.

The comparison of ISLs and GSLs at K-band and higher
frequencies is drawn in Fig. 5. The achievable throughput of
Iridium NEXT in ISLs matches with the engineering statement
by Iridium [18], while the proposal frequencies at 77 and
240 GHz demonstrate at least ten times enhancement in
throughput. The multi-Gbps links can be realized with the
DNN-based resource allocation optimization scheme at various
ISL frequencies, as shown in Fig. 6.

V. CONCLUSION

This paper presents the design of a multi-objective resource
allocation scheme for CubeSat networks, which takes consid-
eration of dynamic channel variations and aims to achieve
optimal throughput in both GSLs and ISLs at multiple bands
ranging from the microwave to the mm-wave and the THz
band. Moreover, training of the real orbital data based on
the Iridium NEXT constellation, the deep neural network-
based resource allocation scheme is implemented with efficient
random hill-climbing algorithm to fit the low power and
computation budget of CubeSats. Simulation results show that
the proposed scheme can help CubeSats to achieve multi-Gbps
throughput in ISLs in the low Earth orbits.
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