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Abstract—Wireless communications in the Terahertz (THz) band
will become a cornerstone of sixth generation (6G) networks.
The THz channel, however, presents several challenges, such as
distance-dependent absorption coefficients that can change the
bandwidth significantly in case of mobility. Thus, future THz
transmitters will have to switch modulation and bandwidth almost
continuously. Moreover, using the same transmission scheme can
enable adversaries to leverage smart interfering to inflict more
damage with less energy expense. To help enable adaptive and
secure THz communications, this paper presents the first ever
experimental study of modulation and bandwidth classification
(MBC) at THz frequencies through deep learning (DL) techniques.
We have performed an extensive experimental data collection
campaign at 120 GHz with different modulation schemes, signal
bandwidth (up to 20 GHz), and different signal-to-noise ratio
(SNR) levels. We prove for the first time the feasibility and
effectiveness of MBC at THz frequencies, with our DL models
reaching accuracy up to 78% and 90% in low and high SNR
conditions. Furthermore, we investigate the memory and latency
constraints that need to be satisfied as a function of the signal
bandwidth, and propose a boosting technique to improve the
inference quality by trading off latency for accuracy. Finally, we
experimentally evaluate the latency of our CNN models through
FPGA implementation.

Index Terms—Terahertz communications, deep learning, wire-
less, 6G, experiments, modulation and bandwidth classification.

I. INTRODUCTION

RADIO frequency (RF) spectrum has become one of the
most scarce resources available nowadays. Ericsson’s lat-

est report forecasts that fifth generation (5G) mobile subscrip-
tions will reach 3.5 billion in 2026, with worldwide data
traffic surpassing 200 exabytes per month [1]. These numbers
clearly show that in a few years, existing spectrum bands below
6 GHz (sub-6-GHz) will become saturated. Thus, a significantly
large number of wireless devices will need to migrate to less
congested spectrum bands. Given the lack of continuous large
chunks of bandwidth (BW) in other frequency bands [2], the
upper millimeter wave (mmWave) and Terahertz (THz) bands
[3] – located between 0.1 and 10 THz of the radio-frequency
spectrum – will be used to relieve the current spectrum crunch
at lower frequencies. Ultimately, this is because ultra-high-
bandwidth wireless links able to multiplex thousands of users
at the same time are possible at THz frequencies [4]. Beyond
addressing spectrum congestion, the THz band will unleash a
digital transformation in our society, by enabling game-changing
applications such as real-time virtual reality/augmented reality
(VR/AR), holographic telepresence, and Industry 4.0 [5, 6].
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Although the THz channel presents unique opportunities, it
also presents a series of unique challenges that are absent in
traditional wireless propagation environments. Indeed, the path
loss in the THz band is strongly impacted by the molecular
absorption loss, which depends on time- and distance-dependent
factors such as the concentration and the particular mixture of
molecules encountered (particularly water vapor) along the path,
as observed in [7]. Thus, THz channels are extremely frequency-
selective, with BW severely shrinking or expanding over time
as a function of the distance between the transmitter (TXer)
and the receiver (RXer) or the ambient humidity, which also
requires significant adaptability in terms of physical layer (PHY)
waveforms used for transmission.

Indeed, THz frequencies are naturally more secure due to
their unique distance-dependent bandwidth and high directivity.
However, it has been shown that they are still susceptible
to interference and eavesdropping [8–12]. While such work
focuses on security from a propagation standpoint, we also
point out that flexibility in physical layer parameters can provide
additional security to wireless signals. It is well studied in the
literature that fixed parameters of wireless transmission schemes
can make the systems vulnerable to interference and hence
affect overall system throughput. For example, Vo-Huu et al.
[13] have shown that deterministic and predictable structure of
the interleavers and coded bits in 802.11 a/g/n coding scheme
can reveal a sub-carrier level pattern which is not a desirable
effect for system security. Clancy in [14] has also pointed out
the vulnerability of orthogonal frequency division multiplexing
(OFDM) scheme that are common in cellular and wireless local
area networks, due to its repeated use of pilot tones. Therefore,
it is paramount from the system security point of view that
future wireless systems should employ extremely flexible PHY,
and transmitter and receiver designs to support the new flexible
signaling schemes. By continuously and seamlessly changing
the PHY parameters, it follows that the transmission scheme
becomes not only more effective, but also more resilient from
a security standpoint.

The reasons above call for extremely flexible and adaptive
PHY protocols where TXer and RXer can change their BW and
modulation (MD) without coordination. While the TXer can
choose MD and BW through channel state information (CSI)
reports sent periodically by the RXer, to decode the data the
RXer needs to reconfigure the BW of its baseband finite impulse
response (FIR) filter before the waveform is demodulated. We
define this process as modulation and bandwidth classification
(MBC), which is shown in Figure 1. The received THz signal
with variable BW and MD is processed by a THz RF front-
end and down-converted from RF to baseband frequency. The
baseband signal is then sent to a convolutional neural network
(CNN), which infers BW and MD of the incoming THz signal.
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Fig. 1: Modulation and bandwidth classification (MBC) in Terahertz (THz)
networks through deep learning at the physical layer (PHY).

The CNN inference would then be used by a reconfigurable digi-
tal signal processing (DSP) logic, which proceeds to demodulate
and recover the application data.

Although MD classification has been explored in the sub-
6-GHz context [15–19], to the best of our knowledge BW
classification has not been attempted yet. However, this is
definitely going to change for THz networks. Although the
Institute of Electrical and Electronics Engineers (IEEE) 802.15-
3d standard – the only redacted for THz frequencies [20] so far
– defines 8 different possible BWs that can be used, it does not
specify if, when, and how a TXer shall switch to a different BW.
For this reason, an investigation into the feasibility of MBC at
THz will directly impact ongoing standardization efforts in the
THz band by the IEEE 802.15 WPAN Terahertz Interest Group
(IGthz), which seeks to explore the usage of THz spectrum for
future IEEE standards [21].

What makes the problem of MBC at THz frequency chal-
lenging is the extremely high BW of the transmission, which
introduces challenges from both a computational and classifica-
tion standpoint. To the best of our knowledge, the problem of
joint modulation and bandwidth classification in the THz band
has not been investigated yet, mostly due to the lack of a well-
constructed dataset capturing extremely high BW transmissions.

In short, the paper provides the following key advances:

• We present the first experimental evaluation of data-driven
MBC at THz frequencies. We utilize a custom-tailored exper-
imental testbed to create a large-scale dataset composed by
in phase/quadrature (I/Q) samples collected at 120 GHz RF
frequency, with (i) 5 modulation schemes (BPSK, QPSK, 8PSK,
16QAM, 64QAM); (ii) 3 bandwidths (5, 10, and 20 GHz); and
(iii) 2 signal-to-noise ratio (SNR) levels (low, high), totaling
150,000 frames. We propose a system model and evaluate the
constraints on memory and latency that the system must satisfy
according to the given maximum system bandwidth;

• We extensively train and test CNN classifiers based on the
experimental data collected through our testbed. We first run an
extensive hyper-parameter exploration by varying the number of
convolutional layers and the number of filters of the CNN. Our
results show that (i) our CNN classifiers achieve up to 78% and

90% accuracy in the case of low and high SNR, respectively.
Next, we propose a novel boosting technique where majority
voting among different CNN executions with subsequent frames
is used to trade off better accuracy for increased latency. We
show that our technique further boosts accuracy by up to 91%
and >99% in the low and high SNR regimes. We also train with
both SNRs to achieve an accuracy of 81% and 92%, for standard
and boosted testing. We further investigate the latency/accuracy
trade-off by reporting CNN latency results obtained through
FPGA implementation;
• We provide to the research community wide access to

the experimental dataset used in this paper, which will act
as performance benchmark for every other subsequent work
for data-driven classification at THz frequencies. Without this
dataset, any subsequent work in this field will necessarily
rely on simulation data, which cannot capture the real-world
effects imposed by not only the THz channel, but also the
frequency selective nature of ultra-broadband THz transceivers
and antennas. Our contribution will help addressing the current
dearth of datasets in the wireless community. To the best of our
knowledge, this is the first work in literature shedding light on
this crucial problem, which will inform current standardization
efforts in the THz band.

II. BACKGROUND AND RELATED WORK

We first motivate the need of modulation and bandwidth
classification (MBC) at THz frequency in Section II-A, then
discuss existing work in ML for wireless in Section II-B and
THz security in Section II-C.

A. Problem Motivation

It is well known that the THz propagation environment is
significantly challenging and substantially different from the
sub-6-GHz and mmWave ones [3, 6, 22]. This is mainly due to
the presence of distance-dependent absorption given by water
vapor molecules between the TXer and the RXer, which are
inevitably present in the atmosphere as long as the ambient
humidity is not absolute zero. The photon energy of THz signals
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Fig. 2: The 3 dB BW in between two absorption lines around 1 THz caused by
molecular absorption with water vapor.
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induces internal vibrations in molecules, which convert the wave
electromagnetic (EM) energy in kinetic energy [7]. The situation
becomes more challenging in the presence of rain, where in
addition to absorption, scattering by water droplets comparable
in size to the signal wavelength is present [23].

As humidity levels and TXer-RXer distance are hardly pre-
dictable in advance, the resulting THz channel bandwidth is
expected to change drastically and dynamically in real-world
THz deployments. To further quantify such effect, Figure 2
shows the normalized channel response around 1.025 THz
as a function of frequency caused by molecular absorption
with water vapor. While absorption is present throughout the
THz band, this provides a clear demonstration of the distance-
dependent bandwidth caused by absorption.

These curves were obtained from the model published in
[7], and are based on the HITRAN molecular spectroscopic
database [24] and radiative transfer theory [25]. We also report
the 3 dB bandwidth for each curve. We can observe that the
bandwidth increases from 58 GHz to 91 GHz in the span of
only 10 meters, which is an increase of 56% with respect to
the original value. As a consequence, transmission schemes at
THz frequency must be bandwidth- and modulation-adaptive to
deal with the shrinking and expansion of the channel during the
duration of the wireless link, which ultimately motivates our
investigation into MBC at THz frequencies.

As yet, a few tailored modulations for THz communications
that can dynamically accommodate different bandwidths have
been proposed. In [26], an optimization framework is developed
to select the duration and number of THz pulses [27] to be
transmitted, as well as the number of molecular-absorption-
defined windows to be utilized according to the distance-
dependent available bandwidth at THz frequencies. In [28],
THz modulators with different modulation order and symbol
duration are concatenated to generate multi-resolution data able
to accommodate users at different distances with different SNR
and different available bandwidth because of the molecular
absorption.

Due to current THz hardware limitations, we are unable to
communicate with bandwidths and distances to experimentally
measure a changing absorption window. Thus, our methodology
uses our highest capabilities of transmitting with 20 GHz of
bandwidth, which we purposefully lower to 10 and 5 GHz to
emulate a narrowing absorption window.

B. Related Work in ML for Wireless

Bleeding-edge advances in machine learning (ML) are in-
creasingly being used for dynamic spectrum access [29–32],
optimal multimedia streaming [33–35], cellular network man-
agement [36, 37], rate selection [38] and resource allocation
[39–43]. For an exhaustive survey on the topic, we refer
the reader to the excellent survey [44]. PHY classification
issues such as modulation recognition have gained significant
momentum over the last few years. However, traditional ML
techniques based on feature extraction are computationally-
expensive, problem-specific, and require the manual establish-
ment of decision bounds [15–19]. Conversely, deep learning
(DL) techniques have received significant attention, thanks to
the lack of feature extraction process [45–49]. Moreover, DL

has been demonstrated to be effective for real-time hardware-
based implementations, since fine-tuning of the model weights
– changeable through software – allows for fast adaptation
to adverse channel conditions [50, 51]. In [52], Like et al.
provide comparisons between ML models’ effectiveness for
signal recognition when introduced to multipath fading, while
[53, 54] demonstrate the effectiveness of modern DL approaches
to the tougher task of fading channels. Amani et al. [55] further
explore multipath in the case of radio fingerprinting.

Among the related work in frequencies below 6 GHz, O’Shea
et al [56] presented several DL models to address modulation
classification, while Karra et al [57] identify modulation class
and order using hierarchical deep neural networks (DNNs).
Kulin et al. [58] presented a conceptual framework for end-to-
end wireless DL, including a methodology to collect, represent
and classify waveforms using DNNs. At mmWave and THz
frequencies (above 30 GHz), DL techniques have been used
to classify beam angle and angle of arrival [59, 60], blockage
prediction [61, 62], indoor localization [63, 64] and channel
estimation [65]. However, most of existing datasets at those
frequencies are generated through simulations, which are not
able to capture real-world channel effects.

C. Related Work in Terahertz Security

The higher free-space path loss (FSPL) at THz frequen-
cies, combined with molecular absorption, will govern the use
of highly directional antennas to complete even short-range
links. With these narrow beamwidths and a frequency selective,
distance-dependent channel, it was once assumed that THz
communications had improved security in both interference and
eavesdropping [66]. However, in recent years, many works have
shown otherwise.

Ma et al. [12], demonstrate the ability to eavesdrop a THz
signal through the introduction of a scatterer into the narrow
transmission beam to deflect the beam in the direction of
an eavesdropper. Moreover, the scatterer is transparent to the
receiver requiring the transmitter to listen for back-scatter in
order to detect its presence.

Similarly, highly directional antennas also have side-lobes
that can be leveraged to eavesdrop on non-line-of-sight (NLOS)
paths. Venkatesh et al. [11] mitigate an eavesdropper’s ability
by forcing side-lobe emissions to be time-varying and spectrally
aliased while keeping the main-lobe unaffected. Moreover, Co-
hen et al. [8] propose absolute security where the frequency
and location dependent antenna minima are encoded such that
a NLOS eavesdropper cannot see enough signal to decode the
transmission. The number of antenna minima increases with
wider bandwidths and greater directivity, making this solution
well-suited for THz communications.

While the work above improves PHY layer security from
a propagation standpoint, there is also vulnerability to inter-
ference in the design of a transmitted packet. Vo-Huu et al.
[13] demonstrate that reliance on certain OFDM sub-carriers
in the 802.11 a/g/n coding scheme allows for highly efficient
narrowband interference. Moreover, Clancy [14] shows that the
use of predictably placed pilot tones in any OFDM waveform
can be leveraged through smart nulling at reduced cost to the
interferer. Thus, inflexibility and predictably of frame structures
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Fig. 3: Experimental testbed, TeraNova, used for data collection and floor layout
of the lab environment. The scale of the floor layout is approximately 1cm:1m.

leaves communications systems vulnerable at the PHY layer.
While signal classification in literature is primarily tasked to
detect other’s signals (for example in cognitive radio), it can be
used to secure communications at the PHY layer. By reducing
the amount of control information that is transmitted and instead
relying upon an adaptive receiver to identify key information
from the waveform itself, the more flexible and less predictable
PHY layer becomes harder for adversaries to understand or
disrupt.

III. EXPERIMENTAL TESTBED, DATA COLLECTION
PROCEDURES, AND MACHINE LEARNING MODELS

Figure 3 shows TeraNova [67], the experimental testbed used
for our data collection campaign, as well as the positioning of
TXer and RXer in our laboratory setting. Our setup leverages
radio front-ends manufactured by Virginia Diodes Inc. (VDI),
which were custom-designed for the 120-140 GHz frequency
range. The 120 GHz TXer has its local oscillator (LO) driven
by an analog signal generator (SG), a Keysight PSG E8257D,
and employs two frequency doublers (total multiplication of 4x)
to bring the PSG signal into the THz range. The transmitted
waveform is designed in MATLAB and produced by a Keysight
M8196A arbitrary waveform generator (AWG). This intermedi-
ate frequency (IF) output is fed into the 120 GHz VDI TXer
where it is mixed with the multiplied LO.

The RXer’s LO is driven by a separate identical SG, and its
downconverted output is read by a Keysight DSOZ632A digital
storage oscilloscope (DSO), where the signal can be analyzed
and saved. For this experiment the 120 GHz TXer and RXer
were fixed with 38 dBi antennas. The use of the AWG and
DSO allowed us to store the received waveforms for further
offline processing.

The process for changing transmission bandwidth was accom-
plished with the flexibility afforded by our communication chain
utilizing an AWG, DSO, and MATLAB. The AWG can generate
signals with a bandwidth up to 32 GHz, thus any waveform
we design in MATLAB within that range can be transmitted
at will. Additionally, the DSO can capture any signal with a
bandwidth up to 63 GHz. In our experiments, however, we limit
the transmission bandwidth to 20 GHz due to the bandwidth of
the radio front-ends. We programmatically control the AWG
and DSO with MATLAB to automate changing waveforms and
capturing data.

The TXer and RXer were deployed in a laboratory environ-
ment in the bottom side of Figure 3, with a distance of 5 meters
separating the two link endpoints. The transmissions were dual-
side band, and as such the bandwidth of the signal was two
times the symbol rate. This gave us a maximum data rate of
60 Gbps for 64QAM, 20 GHz bandwidth.

A. Data Collection and Dataset Structure

The waveforms produced by the AWG were all centered
around the same IF of 20 GHz. The RXer and TXer LO
frequency was set to 135 GHz and 125 GHz respectively, for all
transmissions. Different LO frequencies are utilized to minimize
the impact of the image frequencies and the lack of RF filters
at THz-band frequencies. All received waveforms were then
centered at an IF of 10 GHz. The PSGs were set to 10 dBm
output power. For the two SNR levels recorded, the AWG was
set to 75 mV and 600 mV, for low and high, respectively. Figure
4 shows I/Q constellations of six different received signals to
demonstrate the channel distortion of this set-up.

The average Eb/N0 for each subset was calculated and is
displayed in Table I. The lower SNR level caused the QAM
modulations to have negative Eb/N0 for all three bandwidths
(i.e., noise is more powerful than the signal), which represents
a very challenging scenario for our classifiers.

In our transmitted packet, we use an 18-bit maximal merit
factor (MF) sequence [68] for our preamble to perform frame
synchronization, which is followed by the data payload. We
capture signals using the DSO’s fastest sampling rate, 160 giga-
samples-per-second (GSa/s), to improve our ability to find the
signal in the low SNR scenario.

After frame synchronization, the data payload is downcon-
verted from its 10 GHz IF and split into baseband I/Q samples.
Our DSB 20 GHz signals have a symbol rate of 10 giga-
symbols-per-second (GSym/s), thus our widest baseband band-
width is 10 GHz. All signal’s are therefore filtered with a
10 GHz low-pass filter in order to remove image frequencies
from the IF downconversion in a bandwidth agnostic manner.

With knowledge of the signal’s bandwidth, the signals could
be downsampled to one sample per symbol and demodulated
at this stage. However, we must assume to not know the
signal’s bandwidth or symbol rate in order to present valid
data to the model. Thus, all waveforms are downsampled by
a factor of 8, which keeps them all partially upsampled at a
sampling rate of 20 GSa/s. This results in the three different
BWs having different levels of upsampling: 8, 4, and 2 for
2.5, 5, and 10 GSym/s. This partial upsampling also leaves
transition samples in our signal, which are apparent in Figure 4b.
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Bandwidth Eb/N0

SNR Low 2PSK 4PSK 8PSK 16QAM 64QAM
5 GHz 10.10 6.80 5.24 2.65 0.07

10 GHz 8.26 5.57 3.05 0.51 -1.68
20 GHz 5.99 3.65 1.83 -0.17 -3.65

SNR High
5 GHz 23.21 19.94 18.78 15.57 13.27

10 GHz 22.93 20.54 17.59 15.75 13.07
20 GHz 20.84 18.20 16.48 15.14 12.27

TABLE I: Average Eb/N0 values in dB for all subsets of data.
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Fig. 4: Recovered I/Q constellations with normalized power. a,b 5 GHz 2PSK,
low and high SNR. c,d 10 GHz 16QAM, low and high SNR. e,f 20 GHz 4PSK,
low and high SNR.

then SNR, then modulation order. Each I/Q sample pair has
a corresponding bandwidth, SNR, and modulation label. The
starting index, s, of a frame can be calculated as:

s = (BW × 10 + SNR× 5 +MD)× 5, 000× 2, 048 (1)

The label values are enumerations of their true value, i.e.,

BW ∈ [0, 1, 2], SNR ∈ [0, 1], MD ∈ [0, 1, 2, 3, 4] (2)

B. Machine Learning Architecture and Training Procedures

We leverage CNNs to perform MBC, which have been
demonstrated to be effective in addressing PHY classification
problems such as MD recognition [56] and radio fingerprinting
[69]. Their effectiveness is due to the filters in the convolutional
layers (CVLs), which are able to learn patterns in the I/Q con-
stellation plane regardless of where they occur in the waveform
(shift invariance) [70]. We consider the CNN architecture shown
in Figure 5. In the paper, if not explicitly mentioned otherwise,
we refer to this architecture.

We adapted our CNN from the architecture presented in
[56], which has shown good results in waveform classification
tasks. The input to the network is a tensor of size (Q, 2),
where Q is the number of consecutive I/Q samples. In our
baseline architecture, the input is processed by 7 CVLs, with

Fig. 5: Architecture of the CNN used for MBC.

64 output filters of size 1x7. Each of the CVLs is followed
by a maximum pooling (MaxPool) layer with filters of size
1x2, which ultimately reduces the output dimension of each
CVL in half. Two dense layers follow the CVL + MaxPool
layers, each containing 128 neurons. Finally, a Softmax layer
to obtain the probability distribution over the set of classes.
For the training, validation, and testing phases of learning, the
dataset is divided into 65%, 10%, and 25% splits, respectively.
The hyper-parameters of our baseline architecture are changed
to evaluate their performance in Section IV-A, and we show that
we can achieve comparable accuracy to the baseline model with
shallower networks that use far fewer layers.

Regarding training procedures, CVL layers are trained to
learn F filters Pf ∈ Rd×w, 1 ≤ f ≤ F , where d and w are
the depth and width of the filter. For every 1 ≤ i ≤ n′ and
1 ≤ j ≤ m′, the output of a CVL, defined as Of ∈ Rn′×m′

, is
computed from the input I ∈ Rn×m as follows:

Of
i,j =

d−1∑

k=0

w−1∑

ℓ=0

Pf
d−k,w−ℓ · Ii−k,j−ℓ (3)

where n′ = 1 + ⌊n+ d− 2⌋ and m′ = 1 + ⌊m+ w − 2⌋.
We use the Adam algorithm [71] as our optimizer with an ℓ2
regularization parameter λ = 0.0001, and a learning rate of
l = 0.0001. We minimize the prediction error through back-
propagation, using categorical cross-entropy as a loss function
computed on the classifier output. We implement our CNN
architecture in Keras running on top of TensorFlow on a system
with 8 NVIDIA Cuda enabled Tesla V100 GPU.

C. Majority Voting and System Constraints

We leverage a customized boosting procedure [72] based on
majority voting [73] to improve the performance of the CNN
classifier. The rationale is that, since consecutive PHY frames
are likely to belong to the same class, the accuracy of the CNN
can be boosted by choosing the class that won the majority
among the different runs of the CNN corresponding to the
consecutive PHY frames. In addition, our model operates on a
max of 2,048 I/Q samples, and it is likely that a real data packet
will be longer. For our 20 GHz BW signals, this holds 1,024
symbols of data, and for 5 GHz, it holds only 256 symbols.
Thus, a single data packet could be used to generate multiple
CNN inferences, which will ease the constraint of relying on
several packets being sent before the channel changes.

More formally, by defining as V the number of consecutive
PHY frames, the final class C is selected as follows:

C = argmax
i

V∑

j=1

1

V
· p̂ij , (4)
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Fig. 4: Recovered I/Q constellations with normalized power. a,b 5 GHz 2PSK,
low and high SNR. c,d 10 GHz 16QAM, low and high SNR. e,f 20 GHz 4PSK,
low and high SNR.

We believe the differing amounts of transition samples is what
allows our model to classify the bandwidth of the signal.

With this setup, we transmit signals with different SNR
levels, modulations, and bandwidths. With two SNR levels, five
modulations, and three bandwidths, a total of 30 subsets were
collected. Each of these subsets contains 5,000 frames, totalling
150,000 frames, with each frame containing 2,048 I/Q samples.
The dataset is formatted as a concatenation of all samples from
all frames. It is sorted in ascending order first by bandwidth,
then SNR, then modulation order. Each I/Q sample pair has
a corresponding bandwidth, SNR, and modulation label. The
starting index, s, of a frame can be calculated as:

s = (BW × 10 + SNR× 5 +MD)× 5, 000× 2, 048 (1)

The label values are enumerations of their true value, i.e.,

BW ∈ [0, 1, 2], SNR ∈ [0, 1], MD ∈ [0, 1, 2, 3, 4] (2)

B. Machine Learning Architecture and Training Procedures

We leverage CNNs to perform MBC, which have been
demonstrated to be effective in addressing PHY classification
problems such as MD recognition [56] and radio fingerprinting
[69]. Their effectiveness is due to the filters in the convolutional

Fig. 5: Architecture of the CNN used for MBC.

layers (CVLs), which are able to learn patterns in the I/Q con-
stellation plane regardless of where they occur in the waveform
(shift invariance) [70]. We consider the CNN architecture shown
in Figure 5. In the paper, if not explicitly mentioned otherwise,
we refer to this architecture.

We adapted our CNN from the architecture presented in
[56], which has shown good results in waveform classification
tasks. The input to the network is a tensor of size (Q, 2),
where Q is the number of consecutive I/Q samples. In our
baseline architecture, the input is processed by 7 CVLs, with
64 output filters of size 1x7. Each of the CVLs is followed
by a maximum pooling (MaxPool) layer with filters of size
1x2, which ultimately reduces the output dimension of each
CVL in half. Two dense layers follow the CVL + MaxPool
layers, each containing 128 neurons. Finally, a Softmax layer
to obtain the probability distribution over the set of classes.
For the training, validation, and testing phases of learning, the
dataset is divided into 65%, 10%, and 25% splits, respectively.
The hyper-parameters of our baseline architecture are changed
to evaluate their performance in Section IV-A, and we show that
we can achieve comparable accuracy to the baseline model with
shallower networks that use far fewer layers.

Regarding training procedures, CVL layers are trained to
learn F filters Pf ∈ Rd×w, 1 ≤ f ≤ F , where d and w are
the depth and width of the filter. For every 1 ≤ i ≤ n′ and
1 ≤ j ≤ m′, the output of a CVL, defined as Of ∈ Rn′×m′

, is
computed from the input I ∈ Rn×m as follows:

Of
i,j =

d−1∑

k=0

w−1∑

ℓ=0

Pf
d−k,w−ℓ · Ii−k,j−ℓ (3)

where n′ = 1 + ⌊n+ d− 2⌋ and m′ = 1 + ⌊m+ w − 2⌋.
We use the Adam algorithm [71] as our optimizer with an ℓ2
regularization parameter λ = 0.0001, and a learning rate of
l = 0.0001. We minimize the prediction error through back-
propagation, using categorical cross-entropy as a loss function
computed on the classifier output. We implement our CNN
architecture in Keras running on top of TensorFlow on a system
with 8 NVIDIA Cuda enabled Tesla V100 GPU.

C. Majority Voting and System Constraints

We leverage a customized boosting procedure [72] based on
majority voting [73] to improve the performance of the CNN
classifier. The rationale is that, since consecutive PHY frames
are likely to belong to the same class, the accuracy of the CNN
can be boosted by choosing the class that won the majority
among the different runs of the CNN corresponding to the
consecutive PHY frames. In addition, our model operates on a
max of 2,048 I/Q samples, and it is likely that a real data packet
will be longer. For our 20 GHz BW signals, this holds 1,024
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Fig. 6: Majority voting algorithms used to boost accuracy.

symbols of data, and for 5 GHz, it holds only 256 symbols.
Thus, a single data packet could be used to generate multiple
CNN inferences, which will ease the constraint of relying on
several packets being sent before the channel changes.

More formally, by defining as V the number of consecutive
PHY frames, the final class C is selected as follows:

C = argmax
i

V∑

j=1

1

V
· p̂ij , (4)

where p̂ij is the probability estimate from the j-th classification
rule for the i-th class.

Figure 6 shows an example of our algorithm assuming a
number of V = 4 consecutive PHY frames. Each of these
frames is fed to the trained CNN model one at a time as
soon as it is received. The output of the CNN corresponding
to each frame is coalesced into a single decision by choosing
the class that had the majority of votes among the individual
CNN outputs.

A critical constraint that is related to the utilization of a
CNN in the DSP loop is that the system has to wait until the
CNN computation is completed before the waveform can be
demodulated. This implies that the waveform has to be buffered
before it can be demodulated. More formally, if the signal has
bandwidth of W MHz, it has to be sampled at S = 2 ·W MSa/s
according to Nyquist. In our system, each ADC sample is 1
byte long. Therefore, S MBs need to be buffered each second
to avoid overflows. For the sake of generality, we assume the
memory available to store waveform samples is B MBs, and
the latency of the CNN to be L seconds. Figure 7 visualizes
this scenario.

We assume that if the transmitter is switching modulation
and bandwidth parameters every T seconds, the system needs
to run the CNN at least once every K times per second to
achieve good demodulation performance. Therefore, every T/K
seconds, the following operations must be performed: (i) insert
S ·(T/K) bytes into the waveform buffer; (ii) wait for the CNN
to complete its execution after L seconds; (iii) read the inference
results from the CNN, and finally (iv) reconfigure the DSP and
release the buffered waveform. For simplicity, we will consider
(i), (iii), (iv) negligible with respect to the CNN latency L.
As a consequence, the following memory constraint must hold:
B ≥ S ·

(
T
K

)
, as well as the following latency constraint must

hold: L ≤ T
K . These constraints become extreme due to the

significant bandwidth size (i.e., tens of GHz) that the receiver
has to process.

Fig. 7: System constraints in the MBC problem.

For example, let us assume our widest bandwidth of 20 GHz
is used. If the transmitter switches parameters every T =
100 ms, and the receiver runs the CNN K = 25 times during
each 100 ms period, then the CNN latency L ≤ T

K = 4 ms
(which can be achieved given our results in Section IV-C). The
buffer constraint becomes: B ≥ 2·20e9·100e-3

25 = 160 MB.
Notice that the buffer size B and the sampling rate S usually

cannot be relaxed in real-world applications, given they are hard
constraints imposed by the platform hardware/RF circuitry. The
only parameters that may be modified to meet the requirements
are L and K. Although increasing K can help meet the memory
constraint, it makes the latency constraint harder to meet.
However, if K becomes too small, spectrum data could be stale
when the CNN is run (i.e., the transmitter has already switched
parameters), which can lead to poor performance. Thus, the
latency of the CNN, L, has to be decreased in real systems.

IV. EXPERIMENTAL RESULTS

We first present in Section IV-A the results of a hyper-
parameter evaluation of our CNN models, as well as the
impact of our accuracy boosting technique. We then present in
Section IV-B the confusion matrices obtained during the testing
phase of the CNNs. Finally, in Section IV-C we measure the
increased computation time with synthesized FPGA latency tests
with and without boosting to determine the feasibility of using
a CNN on a real-time system.

A. Hyper-Parameter Evaluation

The hyper-parameters of a CNN are the number of CVLs in
the network and the amount of output filters in each of those
CVLs. We perform hyper-parameter evaluation by fully training
and testing different networks while incrementing these values
to find the optimal architecture. The number of CVLs and output
filters effect the number of trainable parameters in the model.
Increasing the number of CVLs lowers the amount of trainable
parameters (due to max pooling), while increasing the number
of output filters raises it. For the models evaluated, the number
of trainable parameters ranges from 23,427 (7 CVLs, 4 filters) to
8,409,103 (1 CVL, 128 filters). Figure 8a evaluates the changes
for low SNR input, while Figure 8b evaluates for high SNR
input. The results in Figure 8 were computed with an input I/Q
size of 1024 samples, and the CVLs are followed by two dense
layers of 128 nodes each.
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From Figures 8a, 8b, we find that the best accuracies obtained
without boosting are 78% and 90% for low and high SNR input
data, respectively. This is a considerable result given the amount
of classifications and use of experimental data.

We notice that increasing the number of layers and filters
per layer increases accuracy up to an extent. As the number of
CVL increases past a certain point, the CNN starts to overfit the
training dataset which results in poor accuracy in the test set.
For example, the accuracy decreases by 10% when increasing
the number of CVLs from 5 to 7 in the low SNR regime with
128 filters per layer. By the same token, a low amount of filters
per layer with a large amount of CVLs results in a low amount
of trainable parameters, and performs the poorest.

The number of filters per layer is the greatest contributing
factor to accuracy. This parameter directly controls the amount
of features extracted from the raw waveform data, which in
turn controls how much extracted knowledge is passed onto the
decision making dense layers.

To evaluate the effect of our boosting procedure on the
performance, Figures 8c, 8d show the impact of majority voting
on the performance of the CNN. The models are tested with
V = 10 and the results are averaged on 1000 votes for each of
the 15 classes. We notice that our boosting technique is able to
increase accuracy by up to 21% and 20% in the low and high
SNR regimes, and achieve top accuracies of 91% and >99%,
respectively.

Table II further shows the performance of our boosting
technique, as well as evaluating the impact of the input size
on the performance. Table II concludes that the amount of I/Q
samples fed to the CNN significantly improves the performance
of the model. Specifically, the accuracy improves by up to 18%
in the low and high SNR regime, respectively, when switching
from 128 to 2048 I/Q samples and using 64 filters per Conv
layer. We also notice that boosting has a beneficial effect in
both SNR regimes, which helps improve performance by close
to 10% in the high SNR regime.

Table II also shows the performance of our majority voting
boosting algorithm as a function of the number of consecutive
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Fig. 8: Hyper-parameter evaluation presented with majority voting, V = 10,
testing accuracy. Plotted as number of filters per layer vs. number of CVLs.

training dataset which results in poor accuracy in the test set.
For example, the accuracy decreases by 10% when increasing
the number of CVLs from 5 to 7 in the low SNR regime with
128 filters per layer. By the same token, a low amount of filters
per layer with a large amount of CVLs results in a low amount
of trainable parameters, and performs the poorest.

The number of filters per layer is the greatest contributing
factor to accuracy. This parameter directly controls the amount
of features extracted from the raw waveform data, which in
turn controls how much extracted knowledge is passed onto the
decision making dense layers.

To evaluate the effect of our boosting procedure on the
performance, Figures 8c, 8d show the impact of majority voting
on the performance of the CNN. The models are tested with
V = 10 and the results are averaged on 1000 votes for each of
the 15 classes. We notice that our boosting technique is able to
increase accuracy by up to 21% and 20% in the low and high
SNR regimes, and achieve top accuracies of 91% and >99%,
respectively.

Table II further shows the performance of our boosting
technique, as well as evaluating the impact of the input size
on the performance. Table II concludes that the amount of I/Q
samples fed to the CNN significantly improves the performance
of the model. Specifically, the accuracy improves by up to 18%
in the low and high SNR regime, respectively, when switching
from 128 to 2048 I/Q samples and using 64 filters per Conv
layer. We also notice that boosting has a beneficial effect in
both SNR regimes, which helps improve performance by close
to 10% in the high SNR regime.

Table II also shows the performance of our majority voting
boosting algorithm as a function of the number of consecutive
frames per vote V . Specifically it compares the performance
when testing with 2, 5, 7, and 10 consecutive frames per vote.
The results show that the boosting performance increases with
V , yet it reaches a plateau when V = 10.

B. Confusion Matrices

Figure 9 reports our specific classification results with con-
fusion matrix plots for three CNN architectures trained on our

Majority Votes V

SNR K Input Standard
Testing 2 5 7 10

Low 16 128 42.90% 43.5% 49.6% 50.5% 51.1%
Low 16 1024 58.90% 59.2% 63.9% 64.9% 65.4%
Low 16 2048 66.40% 65.5% 72.6% 73.9% 74.8%
Low 64 128 52.70% 53.6% 57.2% 57.6% 57.8%
Low 64 1024 63.20% 65.1% 68.7% 69.0% 69.7%
Low 64 2048 70.20% 71.7% 75.7% 76.4% 76.4%

Average Increase
Above Standard 0.7% 5.6% 6.3% 6.8%

Average Increase
Above Previous V 4.9% 0.8% 0.5%

High 16 128 47.00% 46.3% 51.7% 52.9% 54.5%
High 16 1024 66.20% 66.0% 74.2% 75.3% 75.0%
High 16 2048 63.40% 62.8% 71.7% 72.8% 73.4%
High 64 128 71.60% 68.9% 82.2% 85.4% 87.2%
High 64 1024 83.90% 86.3% 89.1% 90.2% 92.0%
High 64 2048 90.10% 91.3% 95.3% 95.7% 96.3%

Average Increase
Above Standard -0.1% 7.0% 8.4% 9.4%

Average Increase
Above Previous V 7.1% 1.4% 1.0%

TABLE II: Comparison of increasing V votes in each majority voting, and
effects of majority voting on model with increasing input sizes. All models
used 7 CVLs. K is the amount of output filters per CVL.

two SNR levels. Our results conclude that all the models are
able to perfectly classify the bandwidth of the signal in both
SNR regimes.

We notice that a model trained with less filters is still able to
achieve reliable classification of 2PSK, whereas higher-order
modulations become indistinguishable, especially in the low
SNR scenario. However, we find that increasing the number of
filters in the CVLs severely impacts the accuracy of the model,
achieving 83.9% in the case of 64 filters and 1024 I/Q input
size, as shown in Figure ??.

C. FPGA-based CNN Latency Analysis

To have an estimation of the CNN latency involved in a
real system, we have synthesized some of the CNNs trained in
Section IV-A into FPGA-compliant circuits. Table III shows the
standard and boosted accuracies for select models with different
numbers of CVLs and filters and the added latency when run
on an FPGA. In all these experiments, we have leveraged high-
level synthesis (HLS) to translate the C++-level description of
the CNN directly into hardware-based Verilog language. HLS is
by no means the most efficient synthesis process, and improved
latency results can be reached with different strategies.

The circuits were synthesized assuming a clock period
of 5ns (clock speed of 200 MHz). The target FPGA is a
XC7Z045FFG900-2 from Xilinx, an FPGA commonly used
in SDR devices. The latency estimations are based upon a
pipelined FPGA design presented in [51].

Table III presents majority voting accuracies using V = 10
compared to standard testing accuracies. The smallest model
tested (1 CVL, 32 filters) is able to achieve 99% boosted
accuracy with the high SNR regime and outperform the largest
model’s (3 CVL, 128 filters) standard testing accuracy by 9%
while executing more than 20 times faster. We notice that in-
creasing the number of CVLs and filters exponentially increases
the latency. This result validates the efficacy of majority voting
and drives the effort to design small, shallow networks.
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Fig. 8: Hyper-parameter evaluation presented with majority voting, V = 10,
testing accuracy. Plotted as number of filters per layer vs. number of CVLs.
(a, b) Standard testing low and high SNR. (c, d) Majority voting low and high
SNR.

Majority Votes V

SNR K Input Standard
Testing 2 5 7 10

Low 16 128 42.90% 43.5% 49.6% 50.5% 51.1%
Low 16 1024 58.90% 59.2% 63.9% 64.9% 65.4%
Low 16 2048 66.40% 65.5% 72.6% 73.9% 74.8%
Low 64 128 52.70% 53.6% 57.2% 57.6% 57.8%
Low 64 1024 63.20% 65.1% 68.7% 69.0% 69.7%
Low 64 2048 70.20% 71.7% 75.7% 76.4% 76.4%

Average Increase
Above Standard 0.7% 5.6% 6.3% 6.8%

Average Increase
Above Previous V 4.9% 0.8% 0.5%

High 16 128 47.00% 46.3% 51.7% 52.9% 54.5%
High 16 1024 66.20% 66.0% 74.2% 75.3% 75.0%
High 16 2048 63.40% 62.8% 71.7% 72.8% 73.4%
High 64 128 71.60% 68.9% 82.2% 85.4% 87.2%
High 64 1024 83.90% 86.3% 89.1% 90.2% 92.0%
High 64 2048 90.10% 91.3% 95.3% 95.7% 96.3%

Average Increase
Above Standard -0.1% 7.0% 8.4% 9.4%

Average Increase
Above Previous V 7.1% 1.4% 1.0%

TABLE I: Comparison of increasing V votes in each majority voting, and
effects of majority voting on model with increasing input sizes. All models
used 7 CVLs. K is the amount of output filters per CVL.

1

TABLE II: Comparison of increasing V votes in each majority voting, and
effects of majority voting on model with increasing input sizes. All models
used 7 CVLs. K is the amount of output filters per CVL.
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Fig. 9: Confusion matrices for low SNR (a,c,e) and high SNR (b,d,f) testing
accuracies without boosting. All models use 7 CVLs followed by 2 dense layers
with 128 nodes each, but use different numbers of filters in each CVL and
numbers of samples in the input data. (a, b) 16 filters, 128 samples. (c, d) 16
filters, 1024 samples. (e, f) 64 filters, 1024 samples.

Testing Accuracy

CVLs Filters Low
SNR

High
SNR

Both
SNR

FPGA
Latency

Standard Testing
1 32 67% 85% 67% 4ms
1 64 68% 87% 67% 9ms
1 128 68% 86% 67% 95ms
3 32 66% 82% 73% 78ms
3 64 69% 87% 79% 303ms
3 128 71% 90% 81% 1,180ms

Majority Voting, V = 10
1 32 87% 99% 86% 43ms
1 64 86% 99% 88% 93ms
1 128 87% 99% 86% 952ms
3 32 80% 95% 88% 780ms
3 64 83% 96% 91% 3,030ms
3 128 85% 98% 92% 11,800ms

TABLE III: Standard testing and majority voting (V=10) accuracies for six
models and their corresponding computation times on synthesized FPGA
circuits.

V. CONCLUDING REMARKS AND FUTURE WORK

The THz band is one of the last resorts to withstand the
staggering growth in mobile connectivity experienced over the
last few years, and that is expected to continue in the future.
The severely dynamic channel bandwidth in the THz band
implies that techniques able to demodulate bandwidth-dynamic
transmissions will become mandatory in the years to come. The
experiments presented in this paper have proven for the first
time that relatively small neural networks, including single-layer

CNNs, can be successfully used to address the MBC problem at
THz frequencies, which paves the way to their usage in actual
THz systems. Our FPGA analysis has shown that small models
can achieve high accuracies with boosting and still maintain
low latency, though it may not be enough for extremely fast-
changing channels.

Future research efforts will be devoted to further reducing
FPGA latency through smaller neural networks and better
optimization to enable use in real-time systems. Expanding
the model to classify smaller increments in BW would greatly
increase its capabilities. However, this tougher challenge would
call for changing architecture to a hierarchical model where
bandwidth and modulation are different classifiers. We hope
that our findings will drive existing standardization efforts in
the THz bands, which may consider the usage of data-driven
techniques to implement bandwidth-dynamic systems.
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Fig. 9: Confusion matrices for low SNR (a,c,e) and high SNR (b,d,f) testing
accuracies without boosting. All models use 7 CVLs followed by 2 dense layers
with 128 nodes each, but use different numbers of filters in each CVL and
numbers of samples in the input data. (a, b) 16 filters, 128 samples. (c, d) 16
filters, 1024 samples. (e, f) 64 filters, 1024 samples.

frames per vote V . Specifically it compares the performance
when testing with 2, 5, 7, and 10 consecutive frames per vote.
The results show that the boosting performance increases with
V , yet it reaches a plateau when V = 10.
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Testing Accuracy

CVLs Filters Low
SNR

High
SNR

Both
SNR

FPGA
Latency

Standard Testing
1 32 67% 85% 67% 4ms
1 64 68% 87% 67% 9ms
1 128 68% 86% 67% 95ms
3 32 66% 82% 73% 78ms
3 64 69% 87% 79% 303ms
3 128 71% 90% 81% 1,180ms

Majority Voting, V = 10
1 32 87% 99% 86% 43ms
1 64 86% 99% 88% 93ms
1 128 87% 99% 86% 952ms
3 32 80% 95% 88% 780ms
3 64 83% 96% 91% 3,030ms
3 128 85% 98% 92% 11,800ms

TABLE I: Standard testing and majority voting (V=10) accuracies for six
models and their corresponding computation times on synthesized FPGA
circuits.

1

TABLE III: Standard testing and majority voting (V=10) accuracies for six
models and their corresponding computation times on synthesized FPGA
circuits.

B. Confusion Matrices

Figure 9 reports our specific classification results with con-
fusion matrix plots for three CNN architectures trained on our
two SNR levels. Our results conclude that all the models are
able to perfectly classify the bandwidth of the signal in both
SNR regimes.

We notice that a model trained with less filters is still able to
achieve reliable classification of 2PSK, whereas higher-order
modulations become indistinguishable, especially in the low
SNR scenario. However, we find that increasing the number of
filters in the CVLs severely impacts the accuracy of the model,
achieving 83.9% in the case of 64 filters and 1024 I/Q input
size, as shown in Figure 9f.

C. FPGA-based CNN Latency Analysis

To have an estimation of the CNN latency involved in a
real system, we have synthesized some of the CNNs trained in
Section IV-A into FPGA-compliant circuits. Table III shows the
standard and boosted accuracies for select models with different
numbers of CVLs and filters and the added latency when run
on an FPGA. In all these experiments, we have leveraged high-
level synthesis (HLS) to translate the C++-level description of
the CNN directly into hardware-based Verilog language. HLS is
by no means the most efficient synthesis process, and improved
latency results can be reached with different strategies.

The circuits were synthesized assuming a clock period
of 5ns (clock speed of 200 MHz). The target FPGA is a
XC7Z045FFG900-2 from Xilinx, an FPGA commonly used
in SDR devices. The latency estimations are based upon a
pipelined FPGA design presented in [51].

Table III presents majority voting accuracies using V = 10
compared to standard testing accuracies. The smallest model
tested (1 CVL, 32 filters) is able to achieve 99% boosted
accuracy with the high SNR regime and outperform the largest
model’s (3 CVL, 128 filters) standard testing accuracy by 9%
while executing more than 20 times faster. We notice that in-
creasing the number of CVLs and filters exponentially increases
the latency. This result validates the efficacy of majority voting
and drives the effort to design small, shallow networks.

V. CONCLUDING REMARKS AND FUTURE WORK

The THz band is one of the last resorts to withstand the
staggering growth in mobile connectivity experienced over the
last few years, and that is expected to continue in the future.
The severely dynamic channel bandwidth in the THz band
implies that techniques able to demodulate bandwidth-dynamic
transmissions will become mandatory in the years to come. The
experiments presented in this paper have proven for the first
time that relatively small neural networks, including single-layer
CNNs, can be successfully used to address the MBC problem at
THz frequencies, which paves the way to their usage in actual
THz systems. Our FPGA analysis has shown that small models
can achieve high accuracies with boosting and still maintain
low latency, though it may not be enough for extremely fast-
changing channels.

Future research efforts will be devoted to further reducing
FPGA latency through smaller neural networks and better
optimization to enable use in real-time systems. Expanding
the model to classify smaller increments in BW would greatly
increase its capabilities. However, this tougher challenge would
call for changing architecture to a hierarchical model where
bandwidth and modulation are different classifiers. We will also
leverage transfer learning to train our models on data affected
by absorption windows when THz and ultra-broadband tech-
nology matures. We hope that our findings will drive existing
standardization efforts in the THz bands, which may consider
the usage of data-driven techniques to implement bandwidth-
dynamic systems.

ACKNOWLEDGEMENTS

This work was supported in part by the US Air Force
Research Laboratory Grant FA8750-20-1-0200 and the US
National Science Foundation Grant CNS-2011411. Approved
for public release. AFRL-2023-0140.

The views expressed are those of the authors and do not
reflect the official guidance or position of the United States
Government, the Department of Defense or of the United
States Air Force. The experimental data set was collected by
Northeastern University team and will be disseminated per DoD
memorandum on Fundamental Research dated 24 May 2010.

REFERENCES
[1] Ericsson Incorporated, “Ericsson Mobility Report, November 2020,”

https://tinyurl.com/EricssonMob2020, 2020.
[2] M. Shafi, A. F. Molisch, P. J. Smith, P. Z. T. Haustein, P. D. Silva,

F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A Tutorial Overview
of Standards, Trials, Challenges, Deployment, and Practice,” IEEE Journal
on Selected Areas in Communications, vol. 35, no. 6, pp. 1201–1221, June
2017.

[3] I. F. Akyildiz, J. M. Jornet, and C. Han, “TeraNets: Ultra-broadband
Communication Networks in the Terahertz Band,” IEEE Wireless Com-
munications, vol. 21, no. 4, pp. 130–135, 2014.

[4] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal,
A. Alkhateeb, and G. C. Trichopoulos, “Wireless Communications and
Applications Above 100 GHz: Opportunities and Challenges for 6G and
Beyond,” IEEE Access, vol. 7, pp. 78 729–78 757, 2019.

[5] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “Toward
6G Networks: Use Cases and Technologies,” IEEE Communications
Magazine, vol. 58, no. 3, pp. 55–61, March 2020.

[6] M. Polese, J. M. Jornet, T. Melodia, and M. Zorzi, “Toward End-to-End,
Full-Stack 6G Terahertz Networks,” IEEE Communications Magazine,
vol. 58, no. 11, pp. 48–54, November 2020.

8

This article has been accepted for publication in IEEE Transactions on Terahertz Science and Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTHZ.2023.3237697

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on January 22,2023 at 04:09:31 UTC from IEEE Xplore.  Restrictions apply. 



[7] J. M. Jornet and I. F. Akyildiz, “Channel Modeling and Capacity Analysis
for Electromagnetic Wireless Nanonetworks in the Terahertz Band,” IEEE
Transactions on Wireless Communications, vol. 10, no. 10, 2011.

[8] A. Cohen, R. G. L. D’Oliveira, C.-Y. Yeh, H. Guerboukha, R. Shrestha,
Z. Fang, E. Knightly, M. Médard, and D. M. Mittleman, “Abso-
lute Security in High-Frequency Wireless Links,” arXiv e-prints, p.
arXiv:2208.05907, Aug. 2022.

[9] Z. Fang, H. Guerboukha, R. Shrestha, M. Hornbuckle, Y. Amarasinghe,
and D. M. Mittleman, “Secure communication channels using atmosphere-
limited line-of-sight terahertz links,” IEEE Transactions on Terahertz
Science and Technology, vol. 12, no. 4, pp. 363–369, 2022.

[10] R. Shrestha, H. Guerboukha, Z. Fang, E. Knightly, and D. Mittleman,
“Jamming a terahertz wireless link,” Nature Communications, vol. 13, p.
3045, 06 2022.

[11] S. Venkatesh, X. lu, B. Tang, and K. Sengupta, “Secure space–time-
modulated millimetre-wave wireless links that are resilient to distributed
eavesdropper attacks,” Nature Electronics, vol. 4, 11 2021.

[12] J. Ma, R. Shrestha, J. Adelberg, C.-Y. Yeh, Z. Hossain, E. Knightly, J. M.
Jornet, and D. M. Mittleman, “Security and eavesdropping in terahertz
wireless links,” Nature, vol. 563, no. 7729, pp. 89–93, Nov. 2018.

[13] T. D. Vo-Huu, T. D. Vo-Huu, and G. Noubir, “Interleaving Jamming in
Wi-Fi Networks,” in Proc. of ACM Conference on Security & Privacy in
Wireless and Mobile Networks (WiSec), 2016.

[14] T. C. Clancy, “Efficient OFDM Denial: Pilot Jamming and Pilot Nulling,”
in Proc. of IEEE International Conference on Communications (ICC),
2011.

[15] M. L. D. Wong and A. K. Nandi, “Automatic Digital Modulation Recogni-
tion Using Spectral and Statistical Features with Multi-layer Perceptrons,”
in Proceedings of the Sixth International Symposium on Signal Processing
and its Applications (Cat.No.01EX467), vol. 2, 2001, pp. 390–393.

[16] J. L. Xu, W. Su, and M. Zhou, “Software-Defined Radio Equipped
With Rapid Modulation Recognition,” IEEE Transactions on Vehicular
Technology, vol. 59, no. 4, pp. 1659–1667, May 2010.

[17] S. U. Pawar and J. F. Doherty, “Modulation Recognition in Continuous
Phase Modulation Using Approximate Entropy,” IEEE Transactions on
Information Forensics and Security, vol. 6, no. 3, pp. 843–852, Sept 2011.

[18] Q. Shi and Y. Karasawa, “Automatic Modulation Identification Based on
the Probability Density Function of Signal Phase,” IEEE Transactions on
Communications, vol. 60, no. 4, pp. 1033–1044, April 2012.

[19] S. Ghodeswar and P. G. Poonacha, “An SNR Estimation Based Adaptive
Hierarchical Modulation Classification Method to Recognize M-ary QAM
and M-ary PSK Signals,” in Proc. of International Conference on Signal
Processing, Communication and Networking (ICSCN), Chennai, India,
March 2015, pp. 1–6.

[20] “IEEE Standard for High Data Rate Wireless Multi-Media Networks–
Amendment 2: 100 Gb/s Wireless Switched Point-to-Point Physical
Layer,” IEEE Std 802.15.3d-2017, pp. 1–55, 2017.

[21] Institute of Electrical and Electronic Engineers (IEEE),
“IEEE 802.15 WPAN Terahertz Interest Group (IGthz),”
https://www.ieee802.org/15/pub/IGthzOLD.html, 2021.

[22] H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri, and M.-S. Alouini, “Next
Generation Terahertz Communications: A Rendezvous of Sensing, Imag-
ing, and Localization,” IEEE Communications Magazine, vol. 58, no. 5,
pp. 69–75, 2020.

[23] J. Ma, F. Vorrius, L. Lamb, L. Moeller, and J. F. Federici, “Experimental
Comparison of Terahertz and Infrared Signaling in Laboratory-Controlled
Rain,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 36, no. 9,
pp. 856–865, 2015.

[24] L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath,
M. Birk, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion
et al., “The HITRAN 2008 Molecular Spectroscopic Database,” Journal
of Quantitative Spectroscopy and Radiative Transfer, vol. 110, no. 9-10,
pp. 533–572, 2009.

[25] R. M. Goody and Y. L. Yung, Atmospheric Radiation: Theoretical Basis.
Oxford university press, 1995.

[26] C. Han, A. O. Bicen, and I. F. Akyildiz, “Multi-Wideband Waveform
Design for Distance-Adaptive Wireless Communications in the Terahertz
Band,” IEEE Transactions on Signal Processing, vol. 64, no. 4, 2015.

[27] J. M. Jornet and I. F. Akyildiz, “Femtosecond-Long Pulse-Based Mod-
ulation for Terahertz Band Communication in Nanonetworks,” IEEE
Transactions on Communications, vol. 62, no. 5, pp. 1742–1754, 2014.

[28] Z. Hossain and J. M. Jornet, “Hierarchical Bandwidth Modulation for
Ultra-Broadband Terahertz Communications,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 2019.

[29] Y. Yu, T. Wang, and S. C. Liew, “Deep-Reinforcement Learning Multiple
Access for Heterogeneous Wireless Networks,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 6, pp. 1277–1290, June 2019.

[30] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep Reinforce-
ment Learning for Dynamic Multichannel Access in Wireless Networks,”
IEEE Transactions on Cognitive Communications and Networking, vol. 4,
no. 2, pp. 257–265, 2018.

[31] O. Naparstek and K. Cohen, “Deep Multi-user Reinforcement Learning for
Distributed Dynamic Spectrum Access,” IEEE Transactions on Wireless
Communications, vol. 18, no. 1, pp. 310–323, 2019.

[32] H.-H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distributive
Dynamic Spectrum Access through Deep Reinforcement Learning: A
Reservoir Computing Based Approach,” IEEE Internet of Things Journal,
2018.

[33] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun, “Towards Low Latency
Multi-viewpoint 360◦ Interactive Video: A Multimodal Deep Reinforce-
ment Learning Approach,” Proc. of IEEE Conference on Computer Com-
munications (INFOCOM), 2019.

[34] F. Wang, C. Zhang, F. Wang, J. Liu, Y. Zhu, H. Pang, and L. Sun,
“Intelligent Edge-Assisted Crowdcast with Deep Reinforcement Learning
for Personalized QoE,” Proc. of IEEE Conference on Computer Commu-
nications (INFOCOM), 2019.

[35] Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li, “DRL360: 360-
degree Video Streaming with Deep Reinforcement Learning,” Proc. of
IEEE Conference on Computer Communications (INFOCOM), 2019.

[36] J. Liu, B. Krishnamachari, S. Zhou, and Z. Niu, “DeepNap: Data-Driven
Base Station Sleeping Operations Through Deep Reinforcement Learning,”
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4273–4282, Dec 2018.

[37] Z. Wang, L. Li, Y. Xu, H. Tian, and S. Cui, “Handover Control in Wireless
Systems via Asynchronous Multiuser Deep Reinforcement Learning,”
IEEE Internet of Things Journal, vol. 5, no. 6, pp. 4296–4307, 2018.

[38] L. Zhang, J. Tan, Y. Liang, G. Feng, and D. Niyato, “Deep Reinforcement
Learning based Modulation and Coding Scheme Selection in Cognitive
Heterogeneous Networks,” IEEE Transactions on Wireless Communica-
tions, pp. 1–1, 2019.

[39] M. Feng and S. Mao, “Dealing with Limited Backhaul Capacity in
Millimeter-Wave Systems: A Deep Reinforcement Learning Approach,”
IEEE Communications Magazine, vol. 57, no. 3, pp. 50–55, 2019.

[40] Y. He, N. Zhao, and H. Yin, “Integrated Networking, Caching, and
Computing for Connected Vehicles: A Deep Reinforcement Learning
Approach,” IEEE Transactions on Vehicular Technology, vol. 67, no. 1,
pp. 44–55, Jan 2018.

[41] Y. Sun, M. Peng, and S. Mao, “Deep Reinforcement Learning-Based
Mode Selection and Resource Management for Green Fog Radio Access
Networks,” IEEE Internet of Things Journal, vol. 6, no. 2, April 2019.

[42] R. Li, Z. Zhao, Q. Sun, C. I, C. Yang, X. Chen, M. Zhao, and H. Zhang,
“Deep Reinforcement Learning for Resource Management in Network
Slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[43] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A Neural Adaptive
Multipath Scheduler based on Deep Reinforcement Learning,” Proc. of
IEEE Conference on Computer Communications (INFOCOM), 2019.

[44] Q. Mao, F. Hu, and Q. Hao, “Deep Learning for Intelligent Wireless
Networks: A Comprehensive Survey,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 2595–2621, 2018.

[45] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-Driven Deep Learning for
Automatic Modulation Recognition in Cognitive Radios,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, 2019.

[46] N. E. West and T. O’Shea, “Deep Architectures for Modulation Recog-
nition,” in 2017 IEEE International Symposium on Dynamic Spectrum
Access Networks (DySPAN). IEEE, 2017, pp. 1–6.

[47] K. Karra, S. Kuzdeba, and J. Petersen, “Modulation Recognition Using
Hierarchical Deep Neural Networks,” in 2017 IEEE International Sympo-
sium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2017.

[48] S. Peng, H. Jiang, H. Wang, H. Alwageed, Y. Zhou, M. M. Sebdani,
and Y.-D. Yao, “Modulation Classification Based on Signal Constellation
Diagrams and Deep Learning,” IEEE transactions on neural networks and
learning systems, vol. 30, no. 3, pp. 718–727, 2018.

[49] F. Meng, P. Chen, L. Wu, and X. Wang, “Automatic Modulation Clas-
sification: A Deep Learning Enabled Approach,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 11, pp. 10 760–10 772, 2018.

[50] F. Restuccia and T. Melodia, “Big Data Goes Small: Real-Time Spectrum-
Driven Embedded Wireless Networking Through Deep Learning in the
RF Loop,” Proc. of IEEE Conference on Computer Communications
(INFOCOM), 2019.

[51] ——, “Polymorf: Polymorphic wireless receivers through physical-layer
deep learning,” ser. Mobihoc ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 271–280.

[52] E. Like, V. Chakravarthy, R. Husnay, and Z. Wu, “Modulation recognition
in multipath fading channels using cyclic spectral analysis,” in IEEE
GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference,

9

This article has been accepted for publication in IEEE Transactions on Terahertz Science and Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTHZ.2023.3237697

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on January 22,2023 at 04:09:31 UTC from IEEE Xplore.  Restrictions apply. 



2008, pp. 1–6.
[53] Y. Zhang, D. Liu, J. Liu, Y. Xian, and X. Wang, “Improved deep neural

network for ofdm signal recognition using hybrid grey wolf optimization,”
IEEE Access, vol. 8, pp. 133 622–133 632, 2020.

[54] V. A. Pavlov, S. V. Zavjalov, S. V. Volvenko, and A. Gorlov, “Deep learning
application for classification of sefdm signals,” in 2021 International
Conference on Electrical Engineering and Photonics (EExPolytech), 2021.

[55] A. Al-Shawabka, F. Restuccia, S. D’Oro, T. Jian, B. Costa Rendon,
N. Soltani, J. Dy, S. Ioannidis, K. Chowdhury, and T. Melodia, “Exposing
the fingerprint: Dissecting the impact of the wireless channel on radio
fingerprinting,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, 2020, pp. 646–655.

[56] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-Air Deep Learning
Based Radio Signal Classification,” IEEE Journal of Selected Topics in
Signal Processing, vol. 12, no. 1, pp. 168–179, Feb 2018.

[57] K. Karra, S. Kuzdeba, and J. Petersen, “Modulation Recognition Using
Hierarchical Deep Neural Networks,” in Proc. of IEEE International
Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore,
MD, USA, March 2017.

[58] M. Kulin, T. Kazaz, I. Moerman, and E. D. Poorter, “End-to-End Learning
From Spectrum Data: A Deep Learning Approach for Wireless Signal
Identification in Spectrum Monitoring Applications,” IEEE Access, vol. 6,
pp. 18 484–18 501, 2018.

[59] M. Polese, F. Restuccia, and T. Melodia, “DeepBeam: Deep Waveform
Learning for Coordination-Free Beam Management in mmWave Net-
works,” 2020.

[60] Y. Zhang, M. Alrabeiah, and A. Alkhateeb, “Learning Beam Codebooks
with Neural Networks: Towards Environment-Aware mmWave MIMO,” in
2020 IEEE 21st International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC). IEEE, 2020, pp. 1–5.

[61] M. Alrabeiah and A. Alkhateeb, “Deep Learning for mmWave Beam and
Blockage Prediction using Sub-6 GHz Channels,” IEEE Transactions on
Communications, vol. 68, no. 9, pp. 5504–5518, 2020.

[62] Y. Jin, J. Zhang, B. Ai, and X. Zhang, “Channel Estimation for mmWave
Massive MIMO with Convolutional Blind Denoising Network,” IEEE
Communications Letters, vol. 24, no. 1, pp. 95–98, 2019.

[63] S. Fan, Y. Wu, C. Han, and X. Wang, “A Structured Bidirectional LSTM
Deep Learning Method For 3D Terahertz Indoor Localization,” in Proc.
of IEEE IEEE Conference on Computer Communications (INFOCOM),
2020, pp. 2381–2390.

[64] ——, “SIABR: A Structured Intra-Attention Bidirectional Recurrent Deep
Learning Method for Ultra-Accurate Terahertz Indoor Localization,” IEEE
Journal on Selected Areas in Communications, vol. 39, no. 7, pp. 2226–
2240, 2021.

[65] Y. Chen and C. Han, “Deep CNN-Based Spherical-Wave Channel Estima-
tion for Terahertz Ultra-Massive MIMO Systems,” in GLOBECOM 2020
- 2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[66] J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless
communications,” Journal of Applied Physics, vol. 107, no. 11, p. 111101,
2010.

[67] P. Sen, D. A. Pados, S. N. Batalama, E. Einarsson, J. P. Bird, and J. M.
Jornet, “The teranova platform: An integrated testbed for ultra-broadband
wireless communications at true terahertz frequencies,” Computer Net-
works, vol. 179, p. 107370, 2020.

[68] H. Ganapathy, D. A. Pados, and G. N. Karystinos, “New bounds and
optimal binary signature sets - part ii: Aperiodic total squared correlation,”
IEEE Transactions on Communications, vol. 59, no. 5, 2011.

[69] F. Restuccia, S. D’Oro, A. Al-Shawabka, M. Belgiovine, L. Angioloni,
S. Ioannidis, K. Chowdhury, and T. Melodia, “DeepRadioID: Real-time
Channel-Resilient Optimization of Deep Learning-Based Radio Finger-
printing Algorithms,” in Proceedings of the Twentieth ACM International
Symposium on Mobile Ad Hoc Networking and Computing, 2019.

[70] F. Restuccia and T. Melodia, “Deep Learning at the Physical Layer: System
Challenges and Applications to 5G and Beyond,” IEEE Communications
Magazine, 2020.

[71] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[72] R. E. Schapire, “The Boosting Approach to Machine Learning: An
Overview,” Nonlinear estimation and classification, pp. 149–171, 2003.

[73] D. Ruta and B. Gabrys, “Classifier Selection for Majority Voting,” Infor-
mation Fusion, vol. 6, no. 1, pp. 63–81, 2005.

Jacob Hall [S’20, M’22] earned his B.S. in electrical
and computer engineering from the State University
of New York Polytechnic Institute in 2020, and his
M.S. from Northeastern University in 2022. His M.S.
was funded by the DoD’s SMART Scholarship-for-
Service Program with the Air Force Research Labo-
ratory (AFRL) Information Directorate in Rome, NY
as his sponsor. He works at AFRL under their THz
program. His interests lie at the crossroads of deep
learning and THz communications.

Josep Miquel Jornet [M’13, SM’20] is an Associate
Professor in the Department of Electrical and Com-
puter Engineering, the director of the Ultrabroadband
Nanonetworking (UN) Laboratory, and a member of
the Institute for the Wireless Internet of Things and the
SMART Center at Northeastern University (NU). He
received a Degree in Telecommunication Engineering
and a Master of Science in Information and Commu-
nication Technologies from the Universitat Politècnica
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