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Abstract—Nanonetworks, i.e., networks of nano-sized devices,
are the enabling technology of long-awaited applications in the bi-
ological, industrial and military fields. For the time being, the size
and power constraints of nano-devices limit the applicability of
classical wireless communication in nanonetworks. Alternatively,
nanomaterials can be used to enable electromagnetic (EM) com-
munication among nano-devices. In this paper, a novel graphene-
based nano-antenna, which exploits the behavior of Surface
Plasmon Polariton (SPP) waves in semi-finite size Graphene
Nanoribbons (GNRs), is proposed, modeled and analyzed. First,
the conductivity of GNRs is analytically and numerically studied
by starting from the Kubo formalism to capture the impact of the
electron lateral confinement in GNRs. Second, the propagation of
SPP waves in GNRs is analytically and numerically investigated,
and the SPP wave vector and propagation length are computed.
Finally, the nano-antenna is modeled as a resonant plasmonic
cavity, and its frequency response is determined. The results
show that, by exploiting the high mode compression factor of
SPP waves in GNRs, graphene-based plasmonic nano-antennas
are able to operate at much lower frequencies than their metallic
counterparts, e.g., the Terahertz Band for a one-micrometer-long
ten-nanometers-wide antenna. This result has the potential to
enable EM communication in nanonetworks.

Index Terms—Nano-antenna, graphene, plasmonics, terahertz
band, nanonetworks.

I. INTRODUCTION

NANOTECHNOLOGY is providing a new set of tools to
the engineering community to design and manufacture

novel electronic components, a few cubic nanometers in size,
which can perform specific functions, such as computing, data
storing, sensing and actuation. The integration of several nano-
components into a single entity, just a few cubic micrometers
in size, will enable the development of more advanced nano-
devices. By means of communication, these nano-devices will
be able to achieve complex tasks in a distributed manner [1].
The resulting nanonetworks will enable unique applications of
nanotechnology in the biomedical, industrial, environmental
and military fields, such as advanced health monitoring and
drug delivery systems, or wireless nanosensor networks for
biological and chemical attack prevention.

For the time being, enabling the communication among
nano-devices is still an unsolved challenge. The miniaturiza-
tion of a classical antenna to meet the size requirements of
nano-devices would impose very high radiation frequencies.
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For example, a one-micrometer-long dipole antenna would
resonate at approximately 150 THz. The available transmission
bandwidth increases with the antenna resonant frequency, but
so does the propagation loss. Due to the expectedly very
limited power of nano-devices [40], the feasibility of nanonet-
works would be compromised if this approach were followed.
In addition, it is not clear how a miniature transceiver could
be engineered to operate at these very high frequencies.
Moreover, intrinsic material properties of common metals
remain unknown at the nanoscale [4], [13] and, thus, common
assumptions in antenna theory, such as the ideal Perfect
Electric Conductor (PEC) behavior of the antenna building
components, do not hold in this realm.

Alternatively, the use of nanomaterials to fabricate minia-
ture antennas can help to overcome these limitations [3], [4],
[13], [18], [22], [25], [32]. Amongst others, graphene, i.e., a
one-atom thick layer of carbon atoms in a honeycomb crystal
lattice [10], [27], has attracted the attention of the scientific
community due to its unique electronic and optical properties.
Amongst others, the conductivity of graphene has been studied
both for DC and for frequencies that range from the Terahertz
Band (0.1-10 THz) up to the visible spectrum [8], [9], [11],
[12], [28], [35]. In particular, it has been shown that it drasti-
cally changes with the dimensions or the chemical potential.
For example, the infrared conductivity of infinitely large two-
dimensional graphene sheets at zero chemical potential has
been found to be essentially independent of frequency and
equal to σ0 = πe2/2h (where e refers to the electron charge
and h refers to the Planck constant). More interestingly, it has
been recently shown that the lateral confinement of electrons
in semi-finite-size graphene nanoribbons (GNRs) enhances the
material conductivity in the Terahertz Band [15], [29].

In accordance to its conductivity, the propagation of Surface
Plasmon Polariton (SPP) waves on doped graphene has been
recently analytically studied and experimentally proved [6],
[16], [19], [20], [24], [26], [33], [37]. SPP waves are confined
EM waves coupled to the surface electric charges at the
interface between a metal and a dielectric material. Many
metals support the propagation of SPP waves, but usually at
very high frequencies (e.g., near-infrared and optical frequency
bands). In addition, the propagation of SPP waves even
on noble metals, which are considered the best plasmonic
materials [41], exhibit large Ohmic losses and cannot be easily
tuned. On the contrary, SPP waves on graphene have been
observed at frequencies as low as in the Terahertz Band and,
in addition, these can be tuned by means of material doping.

The propagation wave vector of SPP waves in graphene
can be up to two orders of magnitude above the propagation
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wave vector in vacuum. This can be exploited to design
plasmonic nano-antennas, as we firstly proposed in [18]. The
main difference between a metallic antenna and a plasmonic
antenna is that the equivalent electrical size of a plasmonic
antenna is much larger than its physical dimensions, due to
the much lower speed of SPP waves in the plasmonic antenna
compared to that of free-space EM waves in classical antennas.
This results in much more compact antennas which can be
integrated into nano-devices. Plasmonic antennas are not a new
concept, but have been investigated before [5], [7], [21], [23].
The main difference between classical plasmonic antennas
and graphene-based plasmonic antennas is that SPP waves in
graphene are observed at frequencies in the Terahertz Band,
i.e., two orders of magnitude below SPP waves observed in
gold and other noble materials. In addition, graphene SPP
waves can be tuned by material doping, which opens the
door to tunable nano-antennas. However, to the best of our
knowledge, an accurate analysis of the impact of the lateral
confinement of electrons in GNRs and chemical potential on,
first, the propagation of SPP waves in GNRs and, second, on
the plasmonic nano-antenna response, is missing.

In this paper, we propose, model and analyze a graphene-
based plasmonic nano–antenna for Terahertz Band commu-
nication in nanonetworks, which reassembles a nano-strip
antenna (see Fig. 1). A mathematical framework is developed
to analyze the impact of the dimensions and chemical potential
on the conductivity of the GNR, the propagation properties
of the SPP waves in GNRs, and the frequency response
of the plasmonic nano-antenna. The results show that by
exploiting the behavior of SPP waves in GNRs, miniature
graphene-based plasmonic nano-antennas are able to operate
at much lower frequencies than their metallic counterparts. For
example, a one-micrometer-long few nanometers-wide nano-
antenna is expected to radiate in the Terahertz Band. This
makes graphene-based nano-antennas a promising enabling
technology for EM communication in nanonetworks.

The contributions of this paper are summarized as follows:

• We analytically and numerically study the dynamic com-
plex conductivity of GNRs by using the Kubo formalism,
and investigate the impact of the electron lateral confine-
ment and chemical potential on the GNR EM response.

• We analytically derive the dynamic complex wave vector
of SPP waves in GNRs, and numerically determine the
mode compression factor and the propagation length of
SPP waves in GNRs, for the first time.

• We model the proposed graphene-based heterostructure
as a plasmonic resonant cavity and analytically obtain its
frequency response for different parameter values.

The reminder of this paper is organized as follows. In
Section II, we describe the working principle of our proposed
nano-antenna. In Section III, we analytically and numerically
investigate the conductivity of GNRs. In Section IV, we
analytically and numerically investigate the propagation and
compute the dynamic complex wave vector of SPP waves in
GNRs. In Section V, we obtain the nano-antenna frequency
response, and we conclude the paper in Section VI.
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Fig. 1. A graphene-based plasmonic nano-patch antenna.

II. GRAPHENE-BASED PLASMONIC NANO-ANTENNA

The conceptual design of the proposed graphene-based
plasmonic nano-antenna is shown in Fig. 1. The nano-antenna
is composed of a GNR (the active element), mounted over
a metallic flat surface (the ground plane), with a dielectric
material layer in between, which is used both to support the
GNR as well as to change its chemical potential by means of
material doping. In the complete model, an ohmic contact or
a mechanism to feed the antenna is necessary. However, the
design of adequate feeding mechanisms for nano-antennas is
not the scope of this paper, but part of our future work.

The working principle of the nano-antenna is as follows. For
simplicity, we explain first the device functioning in reception:

• Consider an incident EM plane wave, �Einc, given by

�Einc (z, t) = E0e
i(−k1z+ωt)α̂, (1)

where E0 is the field amplitude, k1 is the propagation
constant in medium 1 (above the GNR), −z is the
propagation direction (perpendicular to the GNR, see
Fig. 1), ω is the angular frequency, t stands for time and
α = x, y is the wave polarization. When �Einc irradiates
the antenna, it excites the free electrons on the graphene
layer. The electronic response of the graphene layer to an
EM field is given by its dynamic complex conductivity, σ.
The conductivity of the GNR depends on the GNR edge
geometry, width and chemical potential, and the incident
field polarization α. In Section III, we study in detail the
dynamic complex conductivity σ of GNRs.

• At the interface between the graphene layer and the
dielectric material layer, SPP waves are excited. The SPP
wave modes that can be supported on the GNR and their
dynamic complex wave vector kspp depend on the real
and imaginary part of the dynamic complex conductivity,
σ. In Section IV, we study the propagation of Transverse
Magnetic and Electric SPP modes in GNRs and obtain
an analytical expression for their dynamic complex wave
vector, kspp. Extensive numerical results are provided to
understand the properties of SPP modes, e.g., the SPP
mode compression factor and the propagation length,
which are analyzed in GNRs for the first time.

• By exploiting the high mode compression factor of SPP
waves in GNRs, novel graphene-based plasmonic nano-
antennas can be developed. The main different between
conventional PEC antennas and plasmonic antennas is the
fact that the SPP current wave propagates with a much
larger wave vector than conventional electric current
waves in PEC antennas. This results in a much lower
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resonant frequency of plasmonic antennas. The frequency
response of nano-antennas is described and analyzed in
Section V, by modeling the antenna as a resonant cavity.

According to the antenna reciprocity theorem, the behavior
of the nano-antenna in transmission can similarly be explained
as follows. Consider a time-varying electric current, �J ,

�J (z, t) = J0e
iωtδ (z − h) α̂ (2)

where J0 is the current amplitude, ω is the angular frequency,
t stands for time, δ stands for the Dirac delta function, h
is the z coordinate of the GNR, i.e., the separation between
the ground plane and the GNR itself, and corresponds to the
feeding point (see Fig. 1), and α = x, y is the current direction.
When �J excites the graphene layer, an SPP wave is generated
at the interface with the dielectric material layer. If the length
of the graphene patch corresponds to integer number of half
plasmon wavelengths, λspp, the plasmonic antenna resonates,
and the antenna radiated EM field is maximized, as we show in
Section V. Ultimately, the frequency response and efficiency
of nano-antennas depends on the properties of SPP waves,
which on their turn depend on the conductivity of GNRs.

III. CONDUCTIVITY OF GRAPHENE NANORIBBONS

In this section, we analytically and numerically investi-
gate the conductivity of GNRs. For this, first, we recall the
electronic band structure and the electron wave functions
of GNRs, and, then, we use the Kubo formalism to study
the conductivity of GNRs as a function of their width and
chemical potential.

A. Electronic Band Structure and Electron Wave Functions

The electronic band structure of a GNR, which describes the
energy values that an electron is allowed or forbidden to have,
depends on the geometry across its long edge. In this paper,
we focus on Armchair GNRs (AGNRs) (see Fig. 2 (left)), but
a similar study can be conducted for Zigzag GNRs (ZGNRs),
with or without defects [29]. The electronic band structure ε
in electron-volts (eV) of an AGNR is given by [38]

εs (k, θ) = st

√
1 + 4 cos2 θ + 4 cos θ cos

(
kb

2

)
, (3)

where s is the band index (s = 1 for the conduction band,
s = −1 for the valence band), t ≈ 3 eV is the nearest-neighbor
atom interaction in the tight-binding model of graphene, k and
θ are the wave vectors parallel and perpendicular to the AGNR
edge, respectively, and b = 3ao, where a0 = 0.142 nm is the
graphene lattice constant. The Brillouin zone, i.e., the area of
interest in the wave vector domain, is the region defined by
the values of kb ∈ [0, π) and θ ∈ (0, π). The conduction and
the valence bands touch at the point (k, θ) = (0, 2π/3), which
is referred to as the Dirac point.

Due to the finite width W of the AGNR, the values of θ
are quantized. In particular, by defining the AGNR width as
W =

√
3/2a0 (N − 1), with N being the number of single-

atom columns across the AGNR width (see Fig. 2 (left)), the
values of θ are given by

θn =
nπ

N + 1
, (4)
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Fig. 2. Lattice structure of an AGNR (left) and energy band-structure an
AGNR with N = 18 (ΔE = 0.56 eV).

where n = 1, 2, ..., N stands for the band index. By consid-
ering the GNR length L much larger than its width, the wave
vector k is treated as a continuous variable. In our analysis,
L is in the order of several hundreds of nanometers and up to
one micrometer, and L � W .

The wave functions Φs
J in an AGNR are given by [31]

φs
J (k, θn) =

1√
N

e−ik b
2 (J−1) sin Jθn

(
e−iΘ(k,θn)

s

)
, (5)

where J = 1, 2, ..., N is the single-atom column index across
the AGNR width (see Fig. 2 a)) and Θ is the polar angle
between k and θn defined with respect to the Dirac point and
it is given by

Θ(k, θn) = atan

(
kb

θn − 2π
3

)
, (6)

where atan refers to the inverse trigonometric tangent function
and θn is defined as in (4).

In Fig. 2 (right), the energy band structure ε of an AGNR,
given by (3), with width W ≈ 2.1 nm (N = 18) is shown.
For this width, the AGNR has a semi-conducting behavior,
i.e., there is a gap between the valence and the conduction
bands. The energy bandgap ΔE in AGNRs depends on N
and is given in eV by

ΔE =

⎧⎪⎪⎨
⎪⎪⎩

0, N = 3m− 1,

−2t
[
1 + cos

(
2m+1
3m+1π

)]
, N = 3m,

−2t
[
1 + cos

(
2m+1
3m+2π

)]
, N = 3m+ 1,

(7)

where m = 1, 2, .... As we show next, the energy bandgap
ΔE plays a major role in the conductivity of thin AGNRs. In
the rest of this paper, we use the following nomenclature for
simplicity: εsn = εs (k, θn), Θn = Θ(k, θn).

B. Dynamical Complex Conductivity

The dynamical complex conductivity of AGNRs is com-
puted next by means of the Kubo formalism. Following the
procedure described in [15], [29], and contrary to many ex-
isting conductivity analysis which are only valid for infinitely
large graphene sheets [8], [9], [11], [12], [28], [35], we do not
make any simplifying assumption on the energy band structure
of AGNRs, temperature or chemical potential. Simply stated,
we compute the conductivity by counting all the allowed
electron transitions in the energy band structure.
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(a) σxx, W = 2.1 nm, N = 18
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(b) σxx, W = 10.1 nm, N = 84
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(c) σxx, W = 50.0 nm, N = 408
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(d) σyy , W = 2.1 nm, N = 18
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Fig. 3. Conductivity of AGNRs.

The dynamical complex conductivity σ of AGNRs depends
on the polarization of the incident electromagnetic field (α =
x, y), and it is given by

σαα (f) = i
�e2

S

∑
s,s′

∑
n,m

∫
k

(
nF (ε

s′
m)− nF (εsn)

)
(εsn − εs′m)∣∣∣〈φs′
m|vα|φs

n〉
∣∣∣2

(εsn − εs′m + hf − iν)
dk,

(8)

where f stands for frequency in Hz, � is the reduced Planck
constant in eV·s, e is the electron charge in C, S is the area of
the reference unit structure [2], {s, s′} stand for band indexes,
{n,m} refer to the sub-bands indexes, k is the wave vector
parallel to the AGNR edge, nF is the Fermi-Dirac distribution
given by

nF (ε) =
1

1 + e
ε−μ
kBT

, (9)

where μ is the chemical potential in eV, kB is the Boltzmann
constant in eV/K, and T stands for the temperature in K.
〈φs′

m|vα|φs
n〉 is the matrix element of the α component of the

velocity operator for the transition from the energy state {s, n}
to the energy state {s′,m}. The matrix elements are classified
into inter-band transitions (s �= s′) and intra-band transitions
(s = s′). The matrix elements of velocity operator for intra-
band transitions in AGNRs are obtained in [29], [30], and are
given by

〈φc
m|vx|φc

n〉 =
{

0, m− n ∈ even,
−i 2π

vF
m−n 〈ςx〉m,n m− n ∈ odd, (10)

〈φc
m|vy |φc

n〉 = δm,nvF 〈ςy〉m,n, (11)

where vF = tb/(2�) is the Fermi velocity, δm,n refers to
the Kronecker delta, and 〈ςα〉 (α = x, y) stands for the Pauli

matrixes, whose elements are given by

〈ςx〉m,n =
1

2

(
eiΘ

m

+ e−iΘn
)
, 〈ςy〉m,n =

−i

2

(
eiΘ

m

+ e−iΘn
)
,

(12)
and the polar angle Θn is defined in (6). Similarly, the matrix
elements of velocity operator for inter-band transitions in
AGNRs are given by

〈φc
m|vx|φv

n〉 =
{

0, m− n ∈ even,
− 2

π
vF

m−n 〈ςy〉m,n m− n ∈ odd,
(13)

〈φc
m|vy|φv

n〉 = δm,nvF 〈ςx〉m,n. (14)

The details to derive (10), (11), (13) and (14) are given in [29].
Finally, the parameter ν in (8) refers to the inverse of the
relaxation time. Note that in (8), when s = s′ and m = n, both
the numerator and the denominator vanish. However, by using
the Taylor expansion of the Fermi-Dirac distribution function,
we can rewrite (8) for this specific case as

σαα (f) ≈ i
�e2

S

∑
s,s′

∑
n,m

∫
k

e
εs

′
m−μ

kBT nF (ε
s′
m)nF (εsn)

kBT∣∣∣〈φs′
m|vα|φs

n〉
∣∣∣2

(εsn − εs′m + hf − iν)
dk.

(15)

A semi-closed-form expression for the real part of the conduc-
tivity is given [15]. However, for the characterization of the
SPP waves in AGNRs, both the real part and the imaginary
part of σ are necessary. Next, we numerically study the
complex conductivity of AGNRs.

C. Numerical Analysis

In Fig. 3, the real and imaginary parts of σxx and σyy

given by (8) are plotted as functions of the frequency for three
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different GNR widths W = 2.1 nm (N = 18), W = 10.1 nm
(N = 84) and W = 50.0 nm (N = 408), and for two different
chemical potentials μ = 0 eV and μ = 0.3 eV, at T = 300 k.
We use ν = 20 meV, which corresponds to a relaxation time
τ = h/ν = 0.2 ps, which is a conservative value.

For W = 2.1 nm, μ = 0 eV, the conductivity, σxx, along
the AGNR edge is dominated by inter-band transitions. The
first peak in the real part of σxx corresponds to f0 = ΔE/h,
where ΔE is the energy band gap given by (7). When
the conductivity is dominated by inter-band transitions, the
imaginary part of σxx is negative. The sign of the imaginary
part of the conductivity plays a major role in the propagation
of SPP waves, as we discuss in Section IV. When the chemical
potential is μ = 0.3 eV, the inter-band transitions below
fμ = μ/h = 72.5 THz disappear. This is better seen for wider
GNRs. When the chemical potential is increased, a component
close to 0 Hz appears due to intra-band transitions.

On its turn, the conductivity, σyy , across the AGNR width,
is also dominated by inter-band transitions. However, there
is only one peak at a frequency above the first inter-band
transition frequency f0. This peak corresponds to an indirect
inter-band transition between sub-band n in the valence band
and sub-band n − 1 in the conduction band. Note that inter-
band transitions between sub-bands with m = n are not
allowed (13), as explained in [29]. When μ = 0.3 eV, σyy

is almost unaltered. Note that there is no component close to
f = 0 Hz in this case, because the diagonal elements of the
velocity operator m = n are equal to 0.

The behavior of the conductivity for W = 10.1 nm
is similar. The conductivity, σxx along the AGNR edge is
dominated by inter-band transitions. The first peak appears
at a much lower frequency, due to the fact that the energy
band gap decreases with the AGNR width. When the chem-
ical potential is increased, the inter-band transitions below
fμ = μ/h = 72.5 THz disappear. This turns into an increased
conductivity component for f = 0 Hz, attributed to intra-band
transitions. Note that the imaginary part of the conductivity is
positive when it is mainly governed by intra-band transitions.

Similarly, the conductivity σyy across the AGNR width is
dominated by a single peak, corresponding to inter-band tran-
sitions. After that, the conductivity tends to the well-known
minimum value for the optical conductivity of graphene,
which further validates these numerical results. When the
chemical potential is increased to μ = 0.3 eV, intra-band
transitions create the peak at f = 0 Hz for σxx. Similarly for
σyy , forward intra-band transitions create the peak at lower
frequencies. Finally, a similar behavior can be observed for
W = 50.0 nm. The conductivity σxx tends to that of infinitely
large graphene sheets, and similarly occurs with σyy .

IV. SURFACE PLASMON POLARITON WAVES IN

GRAPHENE NANORIBBONS

Surface Plasmon Polariton (SPP) waves are confined EM
waves coupled to surface electric charges at the interface
between a metal and a dielectric material. Up to now, most of
the SPP-related research has been focused on the propagation
of SPP waves in noble metals, such as gold and silver.
These materials support the propagation of SPP waves with

high propagation lengths, in the order of a few tens of SPP
wavelengths λspp [36]. However, noble metals only support
SPP waves at frequencies in the infrared and visible frequency
region (in the order of several hundreds of Terahertz). On the
contrary, as we show next, graphene supports the propagation
of SPP waves at much lower frequencies than the noble metals.

In this section, we analytically compute the dynamic com-
plex wave vector of SPP waves in AGNRs and numerically
study their main propagation properties. The majority of
existing studies [6], [14], [17], [20] are focused on infinitely
large graphene sheets. Only recently in [33], the dielectric
function of GNRs is utilized to investigate SPP waves in
metallic AGNRs. Next, we capture the impact of the finite
width of AGNRs and the chemical potential on the SPP waves.

A. Dynamic Complex Wave Vector

The dynamic complex wave vector kspp of SPP waves in
graphene determines the propagation properties of SPP waves.
kspp strongly depends on the conductivity of the AGNR σαα

as well as the permeability μn and permittivity εn of the
materials surrounding the AGNR. The real part of the wave
vector,

Re{kspp} =
2π

λspp
, (16)

determines the SPP wavelength. The imaginary part of the
wave vector Im{kspp} determines the SPP decay or, inversely,
1/Im{kspp} determines the SPP propagation length. We pro-
ceed next to compute the complex value of kspp.

In reception, an α-polarized incident EM plane wave (1)
excites a SPP wave mode on the AGNR, which propagates in
the α direction. Two types of SPP modes can be supported by
the AGNR depending on its conductivity:

• Transverse Magnetic (TM) mode: there is no magnetic
field in the direction of propagation, i.e., Hα = 0.

• Transverse Electric (TE) mode: there is no electric field
in the direction of propagation, i.e., Eα = 0.

1) TM Modes: In order to determine the wave vector
kspp for TM modes we proceed as follows. The SPP electric
field �E and magnetic field �H are governed by the Maxwell’s
equations, which can be written in their differential form as:

∇× �E = −μn
∂ �H

∂t
,∇× �H = �J + εn

∂ �E

∂t
, (17)

where ∇× is the curl operator, μn = μ0μ
r
n is the permeability

of medium n (n = 1 above the AGNR, n = 2 below the
AGNR), εn = ε0ε

r
n is the permittivity of medium n, and �J is

the current created by the α-component of the electric field,
Eα, given by

�J = σααEαδ (z − h) α̂, (18)

where σαα is the AGNR conductivity given by (8) and h is
the z coordinate of the AGNR.

The complex propagation index of TM modes can be found
by assuming that the electric field �E has the form:

�E = E1e
i(ksppα−k1(z−h))α̂+ E2e

i(ksppα−k1(z−h))ẑ z ≥ h,
�E = E3e

i(ksppα+k2(z−h))α̂+ E4e
i(ksppα+k2(z−h))ẑ z < h,

(19)
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Fig. 4. (a) Real part of kspp/k1 and imaginary part of σxx for an AGNR with W = 2.1 nm, (b) Real part of kspp/k1 for different AGNR width, and
(c) 1/e-amplitude decay propagation distance in terms of λspp for different AGNR width (μ = 0.3 eV, T = 300 K).

and the magnetic field �H has the form:

�H = H1e
i(ksppα−k1(z−h))α̂′ z ≥ h,

�H = H2e
i(ksppα+k2(z−h))α̂′ z < h,

(20)

where E1, E2, E3, E4, H1 and H2 are constants, kspp is the
SPP wave vector, α̂ is the polarization direction, α̂′ = |α̂× ẑ|
and kn is the wavector in medium n given by:

kn =
2π

λn
= ω

√
μnεn =

2πf

c0

√
μr
nε

r
n, (21)

where λn, μn, and εn are the wavelength, permeability and
permittivity of medium n, respectively, ω stands for the
angular frequency f refers to the frequency, and c0 is the
speed of light in vacuum. In the rest of the paper, we consider
μr
n = 1 for both media (n = 1 is usually air, and n = 2 is a

non-magnetic dielectric material).
By inserting (19) and (20) in (17) and solving for the

boundary condition at z = h, which is given by,

Hα′

∣∣∣∣
z=h+

−Hα′

∣∣∣∣
z=h−

= σααEα, (22)

the following dispersion equation for TM SPP waves in
graphene is found [6], [14], [17]:

εr1√
k2spp − εr1ω

2

c20

+
εr2√

k2spp − εr2ω
2

c20

= −i
σαα

ωε0
, (23)

where all the parameters have already been defined. A closed-
form solution for kspp can only be obtained when considering
a single isolated AGNR surrounded by air (εr1 = εr2 = 1),
which is not our case. For this, we numerically study the
propagation index of TM SPP waves in the next section.

2) TE Modes: The propagation index for TE modes can
be obtained by following a similar procedure to that for the
TM case. In particular, first, by assuming that the magnetic
field �H and electric field �E have a similar form to that of
the electric field �E in (19) and the magnetic field �H in (20),
second, by plugging this into the Maxwell’s equations (17),
and, third, by forcing the boundary condition at z = h, the
following dispersion equation for the SPP wave vector kspp
can be found [14],√

k2spp −
ω2

c20
ε1 +

√
k2spp −

ω2

c20
ε2 + iωμ0σα′α′ = 0, (24)

where ω is the angular frequency, εn = ε0ε
r
n stands for the

permeability of medium n, c0 is the speed of light in vacuum,

μ0 is the permittivity of the medium n, and σα′α′ is the AGNR
conductivity for α′-polarized waves given by (8). Moreover,
a closed-form expression for kspp can be found in this case,

kspp =
ω

c0

√
εr1 −

(
(εr1 − εr2) + σ2

α′α′η20
2σα′α′η0

)2

, (25)

where η0 = μ0/ε0. Next, we numerically investigate the
propagation of SPP TE modes in AGNRs.

B. Numerical Analysis

In this section, we numerically study the propagation of
SPP waves in semi-finite size graphene nanoribbons. As in
Section III-C, we consider AGNRs with different widths, i.e.,
W = 2.1 nm (N = 18), W = 10.1 nm (N = 84), and W =
50.0 nm (N = 408), as well as different chemical potential
(μ = 0 eV and μ = 0.3 eV), at a temperature T = 300 K.
We consider the medium above the AGNR to be air (εr1 = 1)
and the medium below the AGNR to be silicon dioxide SiO2

(εr2 = 4 for the frequency range considered in our analysis).
1) TM Modes: The propagation of TM SPP modes in

graphene is governed by the dispersion equation given in (23).
For a TM mode to exist, the real part of the SPP wave
vector, Re{kspp}, must be positive. As a result, from (23),
TM modes along the α-axis only exist if the imaginary part
of the conductivity, σαα, is positive. This is in accordance
with the results obtained for infinitely large graphene sheets
in [14], [17], [20], [37]. As a result, based on the conductivity
analysis in Section III-C, SPP TM modes only propagate in
AGNRs with a chemical potential μ > 0. In addition, TM
modes are mainly supported along the x-axis or weakly along
the y-axis in relatively wide ribbons (e.g., W = 50.0 nm).

In Fig. 4(a), we plot the real part of the SPP wave vec-
tor, Re{kspp}, of TM modes propagating along the x-axis
for a W = 2.1 nm wide AGNR, with chemical potential
μ = 0.3 eV, as a function of the frequency. The values
are normalized by the wave vector in the medium 1, k1.
In the same figure, we illustrate the imaginary part of the
conductivity for x-polarized radiation, Im{σxx} from (8), as
a function of the frequency. The SPP wave vector is only
defined at those frequencies for which the imaginary part of
the complex conductivity for x-polarized radiation is positive.
This is achieved when the conductivity is governed by intra-
band transitions (see Section III-C). We can see that the real
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Fig. 5. (a) Real part of kspp/k1 and imaginary part of σyy for an AGNR with W = 2.1 nm, (b) Real part of kspp/k1 for different AGNR width W and
chemical potential μ, and (c) 1/e-amplitude decay propagation distance in terms of λspp for different AGNR width W and chemical potential μ (T = 300 K).

part of kspp can be more than two orders of magnitude higher
than that of the wave vector in medium 1, i.e., in the air.

In Fig. 4(b), the impact of the AGNR width on the prop-
agation of TM SPP modes is illustrated, by plotting the real
part of the SPP wave vector, Re{kspp}, as a function of the
frequency for different values of W . For W = 2.1 nm, SPP
modes appear mainly due to the forward intra-band transitions
at frequencies close to 0 (the so-called Drude component) as
well as right after the frequencies corresponding to inter-band
transitions, due to backward intra-band transitions [29]. When
the AGNR width increases, the conductivity is dominated by
the forward intra-band transitions at frequencies close to 0.
For relative wide AGNRs, W = 50.0 nm, the conductivity
tends to that of infinitely large graphene sheets, and the SPP
wave vector tends to that of graphene [20]. The SPP mode
compression factor, Re{kspp}/k1 is lower for wider AGNRs.
However, this higher compression comes at the cost of lower
SPP propagation distances, as we discuss next.

In Fig. 4(c), we analyze the impact of the AGNR width on
the propagation length of TM SPP modes in graphene, by plot-
ting the inverse of the imaginary part of the SPP wave vector,
1/Im{kspp}, as a function of the frequency for different values
of W . To better illustrate the propagation length of SPP waves,
this is represented in terms of the SPP mode wavelength, λspp

in (16). For example, the 1/e-amplitude decay distance of TM
SPP waves is on the order of a few SPP wavelengths for
frequencies below 100 THz. We can see also that the width
does not drastically impact the relative attenuation of the SPP
waves on graphene, while, as we discussed above, narrower
AGNRs allow more highly compressed SPP modes. Therefore,
for thin AGNRs, λspp � λ1 specially for narrower AGNRs,
while the relative SPP propagation length remains similar.

2) TE Modes: The propagation of TE SPP modes in
graphene is governed by the dispersion equation given in (24).
For a TE mode to exist, the real part of the SPP wave
vector, Re{kspp}, must be positive. As a result, from (24),
TE modes along the α-axis only exist if the imaginary part of
the conductivity, σα′α′ , is negative. This is in accordance with
the results obtained for infinitely large graphene sheets in [14],
[26], [37]. As a result, based on the conductivity analysis in
Section III-C, SPP TE modes can propagate in AGNRs with
a chemical potential μ ≥ 0.

The real part of the SPP wave vector for TE modes
propagating along the x-axis, normalized by the wave vector

in the medium 1, Re{kspp}/k1, is shown in Fig. 5(a), as a
function of the frequency for a W = 2.1 nm wide AGNR,
with chemical potential μ = 0.3 eV. In the same figure, we
illustrate the imaginary part of the conductivity for y-polarized
radiation, Im{σyy} from (8). For this width W and chemical
potential μ, the SPP wave vector is for all the frequencies
in our analysis, given that the imaginary part of the complex
conductivity for y-polarized radiation is always negative. We
can see that the real part of kspp can be more than two orders
of magnitude higher than that of the wave vector in medium
n = 1, i.e., in the air.

In Fig. 5(b), the real part of the SPP wave vector for
TE modes propagating along the x-axis, normalized by the
wave vector in the medium 1, Re{kspp}/k1, is shown as a
function of the frequency for different values of W and of
the chemical potential μ. TE SPP modes propagate along
the x-axis mainly due to inter-band transitions. This can be
clearly seen for example for W = 2.1 nm, in which the SPP
mode compression factor, Re{kspp}/k1 can reach much higher
values than for the rest of frequencies. When increasing the
AGNR width, the major inter-band peaks are attenuated, and
the same occurs with the SPP mode compression factor. As
for the conductivity, the chemical potential does not drastically
affect the propagation of TE SPP modes.

In Fig. 5(c), the inverse of the imaginary part of the SPP
wave vector along the x-axis, 1/Im{kspp}, is shown as a
function of the frequency for different values of W and μ.
This is plotted in terms of λspp in (16) to better understand
it’s behavior. The 1/e-amplitude decay distance of TE SPP
waves is relatively larger in terms of λspp, but due to the
much lower mode compression factor Re{kspp}/k1, the actual
propagation length of TE SPP waves is similar or even slightly
lower than that of TM modes. Finally, the propagation of TE
SPP modes along the y-axis is also possible for those cases
in which Im{σxx} < 0. However, these are only very weakly
propagating modes.

V. MODELING AND ANALYSIS OF GRAPHENE-BASED

PLASMONIC NANO-ANTENNAS

In this section, we model and analyze our proposed
graphene-based plasmonic nano-antenna. First, we highlight
the differences between plasmonic antennas and classical
metallic antennas. We then model the plasmonic nano-antenna
as a resonant cavity and obtain its frequency response.
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A. Plasmonic Nano-antenna Theory

Plasmonic nano-antennas differ largely from classical
metallic antennas. The main differences between plasmonic
nano-antennas and metallic antennas are summarized as fol-
lows:

• Finite Complex Conductivity: In classical antenna the-
ory, a common assumption is to model the material of
the antenna building components as Perfect Electrical
Conductor (PEC), i.e., as a material with infinite con-
ductivity, σPEC → ∞. This assumption simplifies the
analytical study of the antenna by forcing the field inside
the antenna �Ein to be zero. If the field were non-zero,
the current inside the antenna would tend to infinite,
�J in → ∞, as defined by the Ohm’s law (18). Since infi-
nite currents are not allowed, �Ein is required to be zero.
On the contrary, a finite complex conductivity is required
for the propagation of SPP waves, as given by (23) and
(24). Moreover, this conductivity drastically changes with
the size or chemical potential of the material.

• Plasmonic Current Wave: In classical antenna theory,
the electrical current wave traveling along a PEC antenna
propagates at the speed of light in vacuum c0 with
wave vector k0. On the contrary, the electrical current
wave traveling along a plasmonic antenna propagates
at the much lower SPP wave propagation speed with
wave vector kspp. Moreover, it is analytically proven
in [5], that a plasmonic nano-antenna cannot support an
additional current which propagates with k0. This much
slower propagation of the current wave is what allows the
reduction of the physical antenna size in accordance with
the SPP wave compression factor Re{kspp}/k1, given
by (16). The wave vector of SPP waves depends strongly
on the type of SPP modes and the size and chemical
potential of the plasmonic nano-structure.

As a result of these two main differences, many other
implications affect the design of plasmonic nano-antennas. For
example, in classical antenna theory, when considering PEC
materials, the resonant frequency of the fundamental dipole
antenna depends only its length. However, for a plasmonic
antenna, the resonant frequency of a nanowire-based dipole
antenna, depends also on the temperature, chemical potential
or radius of the wire, due to the impact of these parameters
in its conductivity [5]. This can be extrapolated to other types
of plasmonic nano-antennas [7], [21], [23].

B. Frequency Response of Plasmonic Nano-antennas

We model our proposed graphene-based nano-antenna as
a plasmonic nanostrip antenna [34], [39]. At the microscale,
microstrip antennas (also known as planar antennas or printed
antennas) have been widely used in many applications due to
their simple manufacture, compatibility with planar circuitry,
low profile, planar structure, and unidirectional radiation.

The two dimensional nature of graphene makes it, at
least intuitively, a perfect candidate to port the advantages
of microstrip antennas to the nanoscale. Contrary to carbon
nanotube-based antennas [4], [13] or nano-wire-based anten-
nas [5], the planar geometry of graphene is supposed to ease
the integration of nano-antennas in advanced nano-devices

with diverse applications, such as, biological and chemical
nanosensor networks [1] or optical interconnects in advanced
multi-core computing architectures.

In order to analyze the frequency response of nano-strip
antennas, we model the graphene-based heterostructure com-
posed of the AGNR, the dielectric material and the ground
plane, as a plasmonic resonant cavity. This imposes a condi-
tion of the AGNR length L for the antenna to resonate. Up to
this point, in Section III and Section IV, we have analyzed the
impact of the finite width W of the AGNR on its conductivity
and on the propagation of SPP waves, while considering the
length L of the AGNR to tend to infinite or, at least, to be
much larger than W ,

L � W � h, (26)

where h is the dielectric high. As discussed in Section III-C,
and illustrated in Fig. 3, the conductivity of AGNRs tends
to that of infinitely large graphene sheets as the width W
increases. For example, for W = 50 nm, the impact of
the lateral confinement of electrons in the y-axis on the
conductivity along the x-axis is almost negligible. Therefore,
the length L of the AGNR does not impact the conductivity
as long as we consider it to be in the order of a few hundreds
nanometers. Similarly, as we discussed in Section IV-A, the
dispersion of SPP modes in AGNRs given by (23) and (24)
is determined by the permittivity of the surrounding media
and the conductivity of the AGNR, but not by its length L.
However, for the plasmonic nano-antenna to resonate, there is
an additional constraint on the AGNR length, which depends
on the type of SPP modes propagating along the antenna.

1) TM Modes: The condition on the nano-strip length L
for a TM SPP wave mode to propagate along the x-axis is

L = m
λspp

2
= m

π

Re{kspp} (27)

where m = 1, 2, ..., and λspp and kspp refer to the SPP
wavelength and SPP wave vector, respectively. The SPP wave
vector kspp in (23) depends on the AGNR width W and
chemical potential μ. As a result, the resonant length L of
the antenna, or inversely, the resonant frequency of a fixed
length L AGNR depends also on these two parameters. Note
the difference with classical metallic antennas, in which the
wave vector in the vacuum k0 (or an equivalent effective wave
vector keff which captures the impact of the dielectric and the
ground plane) is used instead of the SPP wave vector kspp.

In Fig. 6(a), we plot the resonant antenna length L (27)
for the fundamental TM SPP mode (m = 1) along the x-
axis. As discussed in Section IV-A, SPP TM modes only
exists at specific frequencies for which the imaginary part of
the dynamic complex conductivity σxx is positive. For the
frequencies that the TM mode exists, the wave compression
factor Re{kspp}/k1 allows for a much shorter L than that
of classical metallic antennas. For example, an antenna with
L = 1 μm and W = 2.1 nm, at μ = 0.3 eV and T = 300 K,
approximately radiates at 8.5 THz (Fig. 6(b)). This is 35 times
shorter than the size required for a metallic antenna operating
at the same frequency. These results are consistent with our
first hypothesis in [18], with the simulation-based analysis that
we conducted in [22] for infinitely large graphene sheets, as
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Fig. 6. (a) Antenna resonant length L for the fundamental TM mode (m = 1 in (27)) (μ = 0.3 eV)., (b) Antenna resonant length L for the fundamental
TM mode in the Terahertz Band (μ = 0.3 eV), and (c) Antenna resonant length L for the fundamental TE mode (p = q = 1 in (28)) (T = 300 K).

well as, for the experimental SPP propagation measurements
reported in [16], [19].

2) TE Modes: The condition on the nano-strip length L
for a TE SPP wave mode to propagate along the x-axis is

L =
2q − 1√(

2p−1
W

)2 − (
2

λspp

)2
=

(2q − 1)π√(
(2p−1)π

W

)2

− Re{kspp}2
(28)

where p, q = 1, 2, ..., and λspp and kspp are the SPP wave-
length and wave vector for TE SPP modes, respectively. The
SPP wavevector kspp given by (24) depends on the AGNR
width W and chemical potential μ. Therefore, there is a double
dependance on the width W when determining the resonant
length of TE modes in nano-strip antennas. In Fig. 6(c), the
resonant antenna length L for TE modes is shown as a function
of the frequency. However, as expected from 28, much higher
frequencies are needed to actually see the impact of the length
on the TE mode. Alternatively, much wider nano-strips can
be considered, but in that case, rather than AGNRs, we would
require the use of much larger graphene sheets.

Up to this point, we have discussed the frequency response
of the antenna. However, little has been said about the effi-
ciency of the antenna itself. Based on our numerical analysis
in Section IV-B, the propagation length of the SPP modes
in graphene given by 1/Im{kspp} is on the order of a few
SPP wavelengths λspp which seems somehow desirable for the
radiation from graphene-based heterostructures. However, the
radiation principle itself might differ largely with the AGNR
width. For example, for relatively wide nano-patches, it is
common to model the antenna as four magnetic currents,
one in each edge, two of them being radiative and two of
them resulting in non-radiative. Our current and future work is
aimed at characterizing the antenna efficiency and gain. While
our study has been focused on AGNRs, a similar study can be
conducted for ZGNRs, which would lead to similar results.

VI. CONCLUSIONS

In this paper, we have proposed, modeled and analyzed a
novel graphene-based plasmonic nano-antenna for communi-
cation among nano-devices. The proposed antenna is based
on a thin graphene nanoribbon and reassembles a nano-strip
antenna. We have first analytically and numerically computed
the conductivity of semi-finite size graphene nanoribbons as a
function of their width and chemical potential. Then, we have

extensively analyzed and discussed the propagation of SPP
waves in GNRs for the first time. Finally, we have modeled
our antenna as a plasmonic resonant cavity and obtained
its frequency response. The results show that, by exploiting
the high wave compression mode of SPP waves in AGNRs,
graphene-based nano-antennas are able to work at much
lower frequencies than classical metallic antennas of the same
size. For example, a one-micrometer-long ten-nanometers-
wide plasmonic nano-antenna is expected to radiate in the
Terahertz Band (0.1-10 THz). This result has the potential to
open the door to EM communication in nanonetworks.
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