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Abstract—In this paper, a graphene-based plasmonic phase
modulator for Terahertz band (0.1–10 THz) communication
is proposed, modeled and analyzed. The modulator is based
on a fixed-length graphene-based plasmonic waveguide, and
leverages the possibility to tune the propagation speed of Surface
Plasmon Polariton (SPP) waves on graphene by modifying the
Fermi energy of the graphene layer. An analytical model for
the modulator is developed starting from the dynamic complex
conductivity of graphene and a revised dispersion equation for
SPP waves in gated graphene structures. By utilizing the model,
the performance of the modulator is analyzed in terms of symbol
error rate when utilized to implement a M-ary digital phase
shift keying modulation. The model is validated by means of
electromagnetic simulations, and numerical results are provided
to illustrate the performance of the modulator.

Index Terms—Phase Modulation, Graphene, Plasmonics, Ter-
ahertz Band

I. INTRODUCTION

Wireless data rates have doubled every eighteen months for
the last three decades. Following this trend, Terabit-per-second
(Tbps) links are expected to become a reality within the next
five years. The limited available bandwidth for communication
systems in the microwave frequency range motivates the explo-
ration of higher frequency bands for communication. In this di-
rection, millimeter wave (mm-wave) communication systems,
such as those at 60 GHz [1], have been heavily explored in
the last decade. However, despite their much higher operation
frequency, the available bandwidth for communication is less
than 10 GHz. This would require the use of communication
schemes able to provide a spectral efficiency in the order of
100 bits/second/Hz to support 1 Tbps, which is several times
above the state-of-the-art for wireless communication.

In this context, the Terahertz band (0.1–10 THz) is envi-
sioned as a key player to satisfy the need for much higher
wireless data rates [2], [3]. Despite the absorption from
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water vapor molecules, the THz band supports very large
transmission bandwidths, which range from almost 10 THz
for communication distances below one meter, to multiple
transmission windows, each of them tens to hundreds of GHz
wide, for distances in the order of tens of meters. Traditionally,
the lack of compact and efficient THz signal sources and
detectors, able to operate at room temperature, has limited
the use of the THz band. However, major progress in the last
decade [4], [5] is finally helping to close the THz gap.

In addition to THz signal sources and detectors, a modulator
is needed to embed information on the transmitted signals.
The desired properties of a modulator include high modulation
bandwidth, i.e., the speed at which the properties of the mod-
ulated signal can be changed, and high modulation depth, i.e.,
the maximum difference between modulation states. Different
types of modulators able to control the amplitude or phase of
THz waves have been developed to date [6]. In [7], a high-
electron-mobility transistor based on a III-V semiconductor
material was utilized to modulate the amplitude of a THz
wave. In [8], a metamaterial-based modulator was utilized to
control the phase of a THz wave. In both cases, sub-GHz
modulation bandwidths and low modulation depths limit the
use of these devices in practical communication systems.

More recently, the use of graphene to develop THz wave
modulators has been proposed [9]. Graphene has excellent
electrical conductivity, making it very well suited for propagat-
ing extremely-high-frequency electrical signals [10]. In [11],
a graphene-based amplitude modulator for THz waves was
developed. This was enabled by the possibility to dynamically
control the conductivity of graphene. In [12], a similar prin-
ciple was exploited in a graphene-based meta-device. In these
setups, the main challenge is to increase the modulation depth.
A low modulation depth makes the transmitted symbols more
difficult to distinguish and, thus, results in higher symbol error
rates (SER) in practical communication systems.

In this paper, we propose, model and analyze the perfor-
mance of a graphene-based plasmonic phase modulator for
THz-band communications. The proposed modulator consists
of a fixed-length graphene-based plasmonic waveguide with a
metallic back gate. Its working principle relies on the possibil-
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ity to electronically control the propagation speed of a Surface
Plasmon Polariton (SPP) wave on graphene at THz frequencies
by modifying the chemical potential of the graphene layer.
Starting from the dynamic complex conductivity of graphene
and a revised dispersion equation for SPP waves (Sec. II),
we develop an analytical model for the plasmonic phase
modulator (Sec. III). By utilizing the model, we analyze
the performance of the proposed plasmonic modulator when
utilized to implement a M-ary phase shift keying modulation
in terms of SER (Sec. IV). We validate the model by means
of electromagnetic simulations, and provide numerical results
to illustrate the modulator performance (Sec. V).

II. PROPAGATION PROPERTIES OF SURFACE PLASMON
POLARITON WAVES ON GATED GRAPHENE STRUCTURES

The analysis of the proposed plasmonic phase modulator
requires the characterization of the SPP propagation properties
on graphene. These depend on the conductivity of the graphene
sheet. In this section, we first recall the conductivity model
utilized in our analysis and then define the dispersion equation
for SPP waves on gated graphene structures.

A. Complex Conductivity Model of Graphene

In our analysis, we consider a surface conductivity model
for infinitely large graphene sheets obtained using the Kubo
formalism [13], [14]. This is given by
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where ! = 2⇡f , h̄ = h/2⇡ is the reduced Planck’s constant,
e is the electron charge, kB is the Boltzmann constant, T is
temperature, EF refers to the Fermi energy of the graphene
sheet, and ⌧g is the relaxation time of electrons in graphene,
which depends on the electron mobility µg . EF can be easily
modified by means of electrostatic bias or gating of the
graphene layer, enabling the aforementioned antenna tuning.

As we showed in [15], a more accurate conductivity model
can be developed by taking into account the impact of electron
lateral confinement on graphene nano-ribbons, but the two
models converge for graphene strips which are 50 nm wide
or more. In our analysis, we consider plasmonic resonant
cavities which are a few hundred nanometers wide. Finally,
from [13], [14], it is important to note that the conductivity
model described by (1) and the following was derived by
neglecting the spatial dispersion of the AC field. Therefore,
it can be used for the analysis of the SPP propagation in the
long wavelength limit only, i.e., ! � ksppvF , where kspp is
the SPP wave number and vF ⇡ 8 ⇥ 10

5 m/s is the Fermi
velocity of Dirac fermions in graphene.

B. Dispersion Equation for Surface Plasmon Polariton Waves

The propagation properties of SPP waves can be obtained
by deriving and solving the SPP wave dispersion equation
on graphene. In many of the related graphene plasmonic
works [16], [17], [18], the dispersion equation was obtained
by considering a graphene layer at the interface between two
infinitely large dielectric materials, usually between air and
silicon dioxide (SiO2). However, the proposed modulator relies
on the presence of a metallic ground plane at a distance d
from the graphene layer, which is needed both to create the
plasmonic waveguide as well as to control the Fermi energy
of the graphene layer and tune its conductivity.

From [19], the dispersion equation for Transverse Magnetic
(TM) SPP waves on gated graphene structures in the quasi-
static regime—i.e., for kspp � !/c, where c is the speed of
light—is given by

�i
�g
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=

"1 + "2 coth (ksppd)

kspp
, (5)

where �g is the conductivity of graphene given by (1), "1 is
the relative permittivity of the dielectric above the graphene
layer, and "2 is the relative permittivity of the dielectric
between the graphene layer and the metallic ground plane,
which are separated by a distance d. It can be easily shown
by taking the limit of d ! 1 that (5) tends to the quasi-static
dispersion equation of SPP waves in ungated graphene used
in the aforementioned works.

By solving (5), the complex wave vector kspp can be
obtained. The real part of the wave vector,

Re{kspp} =

2⇡

�spp
=

!

vp
, (6)

determines the SPP wavelength �spp and the SPP wave
propagation speed. The imaginary part determines the SPP
decay or, inversely,

L =

1

2 Im{kspp}
, (7)

determines the SPP propagation length, which is defined as the
distance at which the SPP intensity has decreased by a value
of 1/e. Unfortunately, a closed-form expression for kspp in
this case does not exist, but can only be obtained numerically.

III. GRAPHENE-BASED PLASMONIC PHASE MODULATOR

In this section, we explain the working principle of the
plasmonic phase modulator and develop its analytical model.

A. Working Principle

The conceptual design of the proposed graphene-based
plasmonic phase modulator is shown in Fig. 1. The phase mod-
ulator consists of a plasmonic waveguide, which is composed
of a graphene sheet (the plasmonic material) mounted over a
metallic flat surface (the ground plane), with a dielectric mate-
rial layer in between, which supports the graphene layer. In this
paper, we consider that a SPP wave is already propagating over
the graphene layer. Different mechanisms could be utilized
to launch the SPP wave. For example, a THz plasma wave
could be generated by a HEMT-like device and coupled to the
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Fig. 1. Graphene-based plasmonic phase modulator.

graphene waveguide [20]. Alternatively, a Quantum Cascade
Laser and a grating structure could be utilized for the same [5].

The basic idea for any phase modulator is to establish a
relation between the data bits to be transmitted, which consti-
tute the modulating signal, and the transmitted signal phase.
In our proposed plasmonic phase modulator, the modulating
signal is applied as a bias voltage to the graphene layer and
controls its Fermi energy, EF . From (6), (5) and (1), it is clear
that the Fermi energy directly controls the propagation speed
of the SPP wave on the gated graphene structure. Therefore,
for a fixed length waveguide, the phase at the output of the
waveguide is effectively modulated by the data bits to be
transmitted. The resulting signal can be further propagated
and eventually radiated in free-space by means of a plasmonic
nano-antenna [15], [17], [18].

B. Analytical Model

In this section we develop an analytical model for the phase
of the plasmonic signal at the output of the plasmonic phase
modulator shown in Fig. 1. We denote the plasmonic signals at
the input and the output of the plasmonic waveguide as X and
Y , respectively. The modulator frequency response is denoted
by H . The following relation can be then written,

Y (f,EF ) = X (f)H (f,EF ) , (8)

where f stands for frequency and EF is the Fermi energy of
the graphene layer on which the SPP wave propagates.

The modulator frequency response H is given by

H (f,EF ) = |H (f,EF )| exp (j✓ (f,EF )), (9)

where |H| accounts for the variation in the SPP wave intensity
and ✓ represents the change in the SPP phase at the output of
the fixed-length waveguide.

From Sec. II, the magnitude of the modulator response can
be written as

|H (f,EF )| = exp (�2 Im{kspp (f,EF )}L), (10)

where L represents the waveguide length.
The total phase change ✓ that the SPP wave suffers as it

propagates through the waveguide is given by

✓ (f,EF ) =
2⇡L

�spp (f,Ef)
= LRe {kspp (f,EF )} , (11)

where �spp is the plasmonic wavelength obtained from kspp
as discussed in Sec. II, which depends on the signal frequency
f and the Fermi energy EF .

By combining (10) and (11) in (9), the modulator frequency
response can be written as

H (f,EF ) = exp (�2 Im {kspp (f,EF )}L)
· exp (j Re {kspp (f,EF )}L).

(12)

In an ideal phase modulator, the intensity or amplitude
of the signal should remain constant, independently of the
phase. However, the SPP decay in graphene structures is not
negligible. As a result, we cannot independently modulate the
signal amplitude and phase. This has a direct impact on the
performance of the modulator in a practical communication
system, which we analyze in the next section.

IV. PERFORMANCE ANALYSIS

In this section, we define the constellation of a non-uniform
plasmonic phase shift keying digital modulation and formulate
the SER for M-ary modulations.

A. Signal Space Constellation

The signal space or constellation represents the possible
symbols generated by a given modulation scheme as points
in the complex plane. The real part of each of such points is
referred to as the in-phase component and the imaginary part
denotes the quadrature component.

The number of modulated symbols or points in the con-
stellation is given by M = 2

k, where k = 2, 4, ... refers
to the modulation order. The position of each symbol Sm,
m = 1..M , depends on the modulator behavior. For the
system described in Sec. III, at fixed carrier frequency fc,
the magnitude and phase of each symbol is given by

Sm = |Sm| exp (✓m), (13)
|Sm| = A0 |H (fc, EF,m)| , (14)
✓m = ✓0 + ✓ (fc, EF,m) , (15)

where A0 and ✓0 refer to the amplitude and phase of the input
SPP wave. EF,m = {EF,1, EF,2, ...EF,M} is the set of Fermi
energies that correspond to the transmitted symbols. In our
analysis, we consider A0 = 1 and ✓0 = 0. The constellation
for the proposed plasmonic phase modulator can only be
numerically obtained and will be provided in Sec. V.

B. Symbol Error Rate

The most common metric for a modulation scheme in a
practical communication system is the SER. This is implic-
itly related to the modulation intensity or depth. The more
“distinguishable” the symbols are, the lower the SER. In
general terms, for a modulated symbol Sm, the symbol error
probability Pe is given by [21],

Pe = P {Detect Sm̃, m̃ 6= m | Given that Sm is sent} , (16)

where m = 1, 2, 3...M . The SER for a digital phase modula-
tion with uniform constellation is derived based on the symbol
decision regions, which due to symmetry, are easy to define.
However, this is not the case for non-uniform modulations.
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Instead, the SER for the proposed plasmonic phase modulation
scheme can be directly derived starting from the distance
between symbols in the non-uniform constellation.

In general terms, the union bound for the SER is given by
[21],

SER  1

M
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X
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Q

2

4
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2

2N0
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where the Q function refers to the tail probability of the stan-
dard normal distribution, D(Sm, Sm̃) stands for the distance
between two symbols Sm and Sm̃, and is given by

D(Sm, Sm̃)

2
= kSm � Sm̃k2 , (18)

and N0 is the noise power spectral density.
A common representation of the SER is as a function of

signal-to-noise ratio (SNR) or the energy per symbol to noise
power spectral density Es/N0. From (14), this is given by

SNRm =

Es,m

N0
=
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. (19)

Finally, by combining (17), (18) and (19), the SER for the
non-uniform constellation can be further expressed as
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The SER will be numerically investigated in the next section.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we validate our models and analyze the
performance of the proposed plasmonic phase modulator.

A. Model Validation

We utilize COMSOL Multi-physics to simulate the behavior
of the plasmonic phase modulator shown in Fig. 1. Graphene
is modeled as a transition boundary condition with impedance
given by (1), with ⌧g = 2.2 ps at room temperature T =

300 K. The graphene layer rests on top of a metallic ground
plane with a 90 nm-thick SiO2 dielectric in between ("r = 4).
In Fig. 2, the z-component of the electric field on a 2-µm-long
graphene-based waveguide is shown for fc=4 THz and two
values of EF , namely, 0.13 eV and 0.28 eV. For EF = 0.13 eV,
the waveguide length L corresponds to approximately one and
a half SPP wavelength and, thus, it introduces a phase change
of ⇡. For EF = 0.28 eV, the waveguide length L corresponds
to one full SPP wavelength and introduces a phase change
of 2⇡. Hence, we can define a plasmonic phase modulator of
order M=2, where bit “0” is transmitted as a phase change of
2⇡ by tuning EF to 0.28 eV and bit “1” is transmitted with a
phase change of ⇡ by tuning EF to 0.13 eV.

In addition to the phase, we are interested in the change in
the amplitude of the SPP wave amplitude, as it will affect
the signal space constellation and the SER. In Fig. 3(a)

(a) EF = 0.13 eV (b) EF = 0.28 eV

Fig. 2. Electric field distribution over a graphene-based waveguide at
fc=4 THz, for different Fermi energies, EF (L=2 µm, d=90 nm).

and Fig. 3(b), we illustrate the magnitude and phase of the
plasmonic phase modulator as a function of the Fermi energy,
EF , and for different carrier frequencies, fc. On the one hand,
we are interested in working in a range of EF such that the
magnitude of the modulator does not significantly change. On
the other hand, however, we need at least a phase difference
of ⇡ to create orthogonal symbols. Next, we investigate the
performance of a specific modulator design.

B. Constellation and Symbol Error Rate

In Fig. 4(a), the non-uniform constellation for a plasmonic
phase modulator with fc = 4 THz, EF,0 = 0.28 eV, EF,1 =

0.13 eV, and L = 2 µm, d = 90 nm is shown. Similarly, in
Fig. 4(b), the SER (17) for the proposed modulator is shown
as a function of the SNR and compared to that of a uniform
binary phase shift keying (BPSK) modulation with the same
average energy per symbol Es. As expected, the SER for the
proposed modulator is slightly higher but still comparable to
that of the uniform case.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel graphene-based
plasmonic phase modulator scheme for THz-band communica-
tion. The proposed modulator leverages the possibility to tune
the propagation speed and, thus, output phase of a SPP wave
as its propagates over a graphene layer. We have developed an
analytical model for the modulator by starting from the surface
conductivity model of graphene and the dispersion equation
of SPP waves in gated graphene structures. COMSOL Multi-
physics has been utilized to validate the proposed model. We
have then analyzed the performance of plasmonic modulator
in terms of symbol error rate for the specific case of a
digital binary phase shift keying modulation. The results have
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shown that, despite generating a non-uniform signal space
constellation, the modulated symbols are sufficiently apart to
be easily distinguishable. This highlights the potential of the
proposed approach to enable practical wireless communication
systems in the THz band.
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