AUVNetSim A SIMULATOR FOR UNDERWATER
ACOUSTIC NETWORKS

Josep Miquel Jornet Montana

MITSG 08-4

Sea Grant College Program
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

NOAA Grant No.: NA060AR4170016

AUVNetSim: A Simulator for Underwater
Acoustic Networks

Josep Miquel Jornet Montana,
May 14, 2008

AUVNetSim is a simulation library for testing acoustic networking algorithms [1]. It
is written in Python [2] and it makes extensive use of the SimPy discrete event simulation
package [3]. AUVNetSim is redistributed under the terms of the GNU General Public License.

AUVNetSim is interesting for both end users and developers. A user willing to run several
simulations using the resources that are already available, can easily modify several system
parameters without having to explicitly deal with python code. A developer, who for example,
wants to include a new MAC protocol, can simply do so by taking the advantage of the
existing structure.

1 Prerequisites

To run this software, the following packages are necessary before installing and running the
AUVNetSim:

e Python Environment: the python core software [4].

e SimPy Package: a discrete-event simulation system [5].

e MatplotLib: a python plotting library [6].

e Numpy: a package that provides scientific computing functionalities [7].

All of this software is freely available under the GNU license. Follow the instructions included
within each package to properly complete their installation.

2 AUVNetSim for End Users

The simulator already contains a great variety of parameters and protocols that can be
selected. Rather than having to compile the code each time a new simulation is required, a
user just needs to set up the simulation file (*.py) and the configuration file (*.conf).

2.1 Simulation File

This file contains the main function that will be invoked when the simulator is launched.
The following python code is an example:

import Simulation as AUVSim # Inclusion of the resources
import pylab # Inclusion of the visualization class
def aSimulation(): # Main Function

if(len(sys.argv) < 2):
print "usage: ", sys.argv[0], "ConfigFile" # A configuration file is expected
exit (1)

config = AUVSim.ReadConfigFromFile(sys.argv[1])
print "Running simulation”

nodes = AUVSim.RunSimulation(config) # The simulation is launched
print "Done"

PlotScenario(nodes) # Visualization of the scenario for simulation
PlotConsumption(nodes) # Visualization of the consumption per node
PlotDelay (nodes) # Visualization of the delay per node

pylab.show()

if __name__ == "__main__":
aSimulation()

After the inclusion of the AUVNetSim library, the simulation is launched. After that,
some of the results or statistics that are monitored throughout the simulation are displayed.
The user can either use the already defined visualization functions, create new ones or save
the required information in plain text files which later could be read using, for example,
Matlab. Several examples are included with the downloadable package.

2.2 Configuration File

Several parameters should be specified in the configuration file before each simulation. In the
following lines, there is an example of the content of this type of files.

Simulation Duration (seconds)
SimulationDuration = 1800.00

Available Bandwidth (kHz)
BandWidth = 48.00

Bandwidth efficiency (bps/Hz)
BandwidthBitrateRelation = 1.00

Frequency (kHz)
Frequency = 44.00

Maximum Transmit Power -> Acoustic Intensity (dB re uPa)
TransmitPower = 500.00

Receive Power (dB) -> Battery Consumption (dB)
ReceivePower = -10.00

Listen Power (dB) -> Battery Consumption (dB)
ListenPowerW = -10.00

DataPacketLength (bits)
DataPacketLength = 9600.00 #bits

PHY: set parameters for the physical layer

PHY = {"SIRThreshold": 15.00, "SNRThreshold": 20.00,

"LISThreshold": 3.00, "variablePower":True,

"multicast2Distance" :{0:1600.00,1:2300.00,2:2800.00,3:3200.00,5:6000.0}}

MAC: define which protocol we are using & set parameteres

MAC = {"protocol":"ALOHA", "max2resend":10.0, "attempts":4,
"ACK_packet_length":24, "RTS_packet_length":48, "CTS_packet_length":48,
"WAR_packet_length":24, "SIL_packet_length":24, "tmin/T":2.0,
"twmin/T":0.0, "deltatdata":0.0, "deltad/T":0.0, }

Routing: set parameters for the routing layer
Routing = {"Algorithm": "FBR", "variation":0, "coneAngle":60.0}

Nodes: here is where we define individual nodes

format: AcousticNode(Address, position[, period, destination])

Nodes = [["A", (0,9000,1000), 4%60, "Sink"], ["D", (9000,0,1000), 4%60, "Sink"],
[("B", (9000,9000,1000), 4*60, "Sink"], ["C", (0,0,1000), 4%60, "Sink"],
["Sink", (4500,4500,1000), None, "A"]]

All the possible parameters that can be currently specified are summarized in Table 1.
The simulation can be started by just typing from the OS command line:

!> python simulation_file.py configuration_file.conf

3 AUVNetSim for Developers

Before reading this section, we encourage the user to familiarize with the Python program-
ming language and the SimPy library [2, 3].

Physical Layer

Center Frequency

Bandwidth

Bandwidth Efficiency
Transmitting mode max power
Receiving power consumption
Listening power consumption
Listening threshold

Receiving threshold

Power Control

Power Levels

[kHz]

[kHz]

[bit/Hz]

[dB]

(dB]

(dB]

(dB]

[dB]
True/False
name:value[km]

Only if P.Control is used

Medium Access Control

Protocol

RTS length

CTS length

ACK length

WAR length

SIL length

DATA length
Retransmission attemps
' Maximum waiting time
Tmin

Twmin

Interference region

CS-ALOHA, DACAP
[bit]
[bit]
[bit]
[bit]
[bit]
[bit]

[s]

Only if DACAP is used
Only if DACAP is used

Only if DACAP is used
Only if DACAP is used

Only if ALOHA is used
Only if DACAP is used
Only if DACAP is used
Only if DACAP is used

Routing Layer

Protocol No routes, Static Routes, FBR

Variation 0,1,2 Only if FBR is used
Cone aperture [degree] Only if FBR is used
Retransmission attemps Only if FBR is used
Nodes

Name

Period [s] Can be None
Destination [node] Can be None

Position or Path

List of points

Simulation Duration

[s]

Table 1: AUVNetSim parameters that should be specified in the configuration file

3.1 Simulator Structure

The way in which AUVNetSim is programmed eases the task of including new features. Like
many other wireless network simulators, the description of the different layers functionalities
is specified in different classes or files. A programmer willing to introduce, for example, a
new routing technique does not need deal with the MAC or the physical layer.

The communication between layers is performed by the exchange of short messages. For
example, a packet coming from the application layer is sent to the routing layer, which will
update the packet header and, on its turn, will send it to the MAC layer. Finally, the message
will be transmitted to the channel through the physical layer, following the protocol policy.

In the following lines, an overview of each of the files that compose the simulator is offered.

3.1.1 Simulation.py

This is the main file for a project. In here, the 3D scenario for simulation is created and the
simulation is conducted.

import SimPy.Simulation as Sim # Inclusion of the discrete-event mechanism
from AcousticNode import AcousticNode # Contains the definition of a node

def RunSimulation(config_ dict):
Sim.initialize()

Signal all nodes that a message has been transmitted
AcousticEvent = Sim.SimEvent("AcousticEvent")

nodes = SetupNodesForSimulation(config_dict, AcousticEvent)
Sim.simulate(until=config_dict["SimulationDuration"])
return nodes

A scenario is defined according to the description in the configuration file. There are two
ways of specifying the nodes that the system contains:

e Each node can be specified by its name and position (or a path if it is a mobile node).
If it is an active node, the packet generation rate and the packets’ destination (a new
destination can be randomly chosen before each transmission) should also be included.

A node-field can be defined by the 3D region that it is covering and the number of nodes
that are positioned in it. Nodes can be completely randomly positioned or randomly
positioned within a grid. The nodes in a node-field are usually just relays, but it is easy
to make them generate information too.

def SetupNodesForSimulation(config dict, acoustic_event):
nodes = []

Single nodes

if "Nodes" in config dict.keys():
for n in config dict["Nodes"]:
cn = [config dict,] + n
nodes.append (AcousticNode (acoustic_event, *cn))

Node field
if "NodeField" in config dict.keys():
nodes += CreateRandomNodeField(acoustic_event, config dict,
xconfig_dict["NodeField"])

return nodes

3.1.2 AcousticNode.py

This file contains the description of an acoustic node. Within this class, the different function-
alities of a single node are initialized according to the configuration file. A node is determined
by:

e Name and position.

Characteristics of its physical layer.

Medium Access Control protocol in use.

Routing technique.
Packet Generation Rate and packets’ destination.

N] : /‘;4, ; Y k: ', ‘I"~'v
L

Application Layer |
‘ Pﬁm‘ '.‘-"’s,':

Figure 1: AUVNetSim: node programming structure.

class AcousticNode():

def __init__(self, event, config, label, position, period=None, destination=None):

self.config = config

self .name = label # Node name

self.random_dest = False # Indicates if the destination is fixed
or randomly selected

self.SetupPath(position_or_path) # Position or path of the node
self.total = nHigh*nWide

Physical layer
self.physical_layer = Physicallayer(self, config["PHY"], event)

MAC Layer
self.MACProtocol = SetupMAC(self, config["MAC"])

Routing Layer
self.routing layer = SetupRouting(self, config["Routing"])

Application Layer

self.app_layer = ApplicationLayer(self)

if period is not None:
Schedules the first transmission
self.SetUpPeriodicTransmission(config["Period"], destination)

3.1.3 PhysicalLayer.py

The physical layer of an acoustic node is modeled by a modem and a transducer. The modem
operates in half-duplex mode (it can only receive or transmit at a time). When a packet is
received from the MAC layer, the modem will automatically change to transmission mode,
even if there were packets being received. It is the MAC protocol’s duty to check if the channel
is idle before transmitting. This information is obtained from the modem. When a packet is
being received through the acoustic transducer, the modem is in reception mode. At the end
of the reception, a packet can be either properly received and passed on the MAC layer; just
overheard (received but without a pre-specified SNR); or discarded because of interference.
When a modem detects a collision, it is possible to inform the MAC layer.

Several system performance parameters are measured at this level, including the energy
consumed in transmissions, the energy consumed in listening to the channel, and the number
of collisions detected.

The channel model is also contained in this file. A packet being transmitted will be delayed
according to acoustic propagation and its power will be attenuated according to the acoustic
path-loss model defined in the same file.

A developer can easily introduce new channel models, variables to monitor, modem func-
tionalities, but there are two functions that should be always preserved. These are the ones
that are used to communicate from and to the layer immediately above, in this case, the
MAC layer.

def TransmitPacket(self, packet):
’?? Function called from the upper layers to transmit a packet.

7

def

3.1

223

It is MAC protocol duty to check before transmitting if the chamnel is idle
using the IsIdle() function.
if self.IslIdle()==False:

self .PrintMessage("I should not do this ... the channel was not idle!")

self.collision = False # Initializing the flag
if self.variable_power:
distance = self.multicast2distance[packet["level"]]
pover = distance2Intensity(self.bandwidth, self.freq,
distance, self.SNR_threshold)
else:
power = self.transmit_power # Default maximum power

new_transmission = OutgoingPacket (self)
Sim.activate(new_transmission, new_transmission.transmit(packet, power))

OnSuccessfulReceipt(self, packet):
?72 Function called from the lower layers when a packet is received.
23

self.node.MACProtocol.0OnNewPacket (packet)

4 MAC.py

Different MAC protocols are defined in this file. CS-ALOHA, DACAP and DACAP for FBR

are

already included in the library. It is not the aim of this document to explain the way

in which these are implemented. As in the previous case, there are some functionalities that
should be always preserved:

def

def

InitiateTransmission(self, OutgoingPacket):

?72 Function called from the upper layers to transmit a packet.
)3y

self.outgoing_packet_queue.append(OutgoingPacket)
self.fsm.process("send_data")

OnNewPacket (self, IncomingPacket):
?72 Function called from the lower layers when a packet is received.
1)
self.incoming_packet = IncomingPacket
if self.IsForMe():
self.fsm.process(self.packet_signal [IncomingPacket ["type"]])
else:
self.0OverHearing()

The FSM.py class is used to implement Finite State Machines (common among MAC

protocols). Any state diagram can be easily reproduced by defining the different states and
all the possible transitions between them.

It is also common in MAC protocols to make use of timers to schedule waiting or back-off
periods. A timer will trigger an event if it is not stopped once the time is consumed.

class InternalTimer (Sim.Process):
def __init__(self, fsm):
Sim.Process.__init__(self, name="MAC_Timer")
random.seed()
self.fsm = fsm

def Lifecycle(self, Request):
while True:

yield Sim.waitevent, self, Request

yield Sim.hold, self, Request.signalparam[0]

if(self.interrupted()):
Just ignores the time finalization
self.interruptReset ()

else:
Triggers a new transition in the state diagram
self.fsm.process(Request.signalparam[1])

3.1.5 Routing Layer

A programmer willing to include a new routing technique should do it in this file. As in the
previous layers, independently of the protocol, the functions that interact with the MAC
protocol and the application layer should be preserved:

class SimpleRoutingTable(dict):

def SendPacket(self, packet):
packet["level”]=0.0
packet ["route"] .append((self.node.name, self.node.GetCurrentPosition()))
try:
packet ["through"] = self[packet["dest"]]
except KeyError:
packet["through"]

packet["dest"]
self.node.MACProtocol.InitiateTransmission(packet)

def OnPacketReception(self, packet):
If this is the final destination of the packet,
pass it to the application layer
otherwise, send it on...
if packet["dest"] == self.node.name:
self.node.app_layer.0OnPacketReception(packet)
else:
SendPacket (packet)

At the same time, as the coupling between the MAC protocol and the routing technique
increases, there are more functionalities that are cross-referenced between classes.

9

3.1.6 Application Layer

In the application layer, packets may be periodically generated and relayed to the lower
layers. In addition, some system performance parameters are monitored such as the packet
end-to-end delay or the number of hops that a packet has made before reaching its final
destination.

def PeriodicTransmission(self, period, destination):
while True:
self.packets_sent+=1
packet _ID = self.node.name+str(self.packets_sent)

if self.random_dest and destination==None:
num = randint(0, self.node.total)
destination = self.node.prefix+’%03d’% (num,)

if destination == self.node.name or destination == "S000":
destination = "Sink"

packet = {"ID": packet_ID, "dest": destination, "source": self.node.name,
' "route": [], "type": "DATA", "initial_time": Sim.now(),
"length": self.node.config["DataPacketLength"]}

self.node.routing_layer.SendPacket (packet)
next = poisson(period)
yield Sim.hold, self, next

def OnPacketReception(self, packet):
self.log.append(packet)
origin = packet["route"] [0] [0]
if origin in self.packets_received.keys():
self.packets_received[origin] +=1
else:
self.packets_received[origin]=1

delay = Sim.now()-packet["initial_time"]
hops = len(packet["route"l)

self.PrintMessage("Packet "+packet["ID"]+" received over "+str(hops)+
" hops with a delay of "+str(delay)+
"s (delay/hop="+str(delay/hops)+").")

self.packets_time.append(delay)

self.packets_hops.append (hops)
self.packets_dhops.append(delay/hops)

10

3.1.7 Visualization Functionalities

Last but not least, there are several functions that are included in the downloadable package
that can be used to illustrate the results and check at a glance the system overall performance.
All them make an extensive use of the MatPlotLib/Pylab package and can be found in the
Sim.py file. The main idea is to process the different variables that are monitored during the
simulation, from the structure containing all the nodes.

In Fig.2, the scenario for a simulation containing four active nodes (A, B, C, D), trans-
mitting to a common sink, and 64 relays is shown. Within this graph, we are able to show
plenty of information:

1. Only the nodes that participated in the packets transmissions are shown by name.

2. The color of a node is related to the energy that it has consumed by just listening to the
channel. That is to say, a node surrounded by active nodes will have a red-like color.

3. The size of a node is proportional to the energy that it has consumed transmitting
packets in the network. A bigger node has taken part in more packet exchanges than a
smaller node.

4. Routes can then visually be identified.

Scenario
12000 : :
10000
e ° [-] []
@ -. . ° .
® -]
8000} - . ° &> °
06 . 46
o* P22, @ .
6000/ < L 37 °
_ . & A
E * %
> oSink
4000} 9 & . 3044 &
Lo e U
. L 3
L4 e
2000} @ I -]
® o ad o*
0 [] b @
-200 : ' .
22000 0 2000 4000 6000 8000 10000 12000
X(m)

Figure 2: AUVNetSim: scenario for simulation and final node status.
Alternatively, the energy consumed in both transmitting and receiving packets can be

plotted in a bar diagram, such as the one shown in Fig.3. Fig.4 contains a histogram of the
end-to-end delay of the packets received at the common sink. 3D graphs are also possible.

11

For example, in Fig.5 a network containing an AUV and a node-field with 16 relays is shown.
In the same plot, the route that each packet has followed is included.

Power Consumption
6
5
4
3
>
23
[
=4
w
2
1
% 10 20 30 40 50 60 70
Node Number

Figure 3: AUVNetSim: energy consumption at each node of the scenario.

References

[1] AUVNetSim Project Site, http://sourceforge.net/projects/auvnetsim,/.

[2] Guido van Rossum, “Python Tutorial”, http:/ /docs.python.org/tut/.

3] T.Vignaux, K.Muller, “The SimPy Manual”, http:/ /simpy.sourceforge.net /.
[4] Python Project Site, http://www.python.org/download, .

[5] SimPy Project Site, http://simpy.sourceforge.net /archive.htm.

[6] MatPlot Library Project Site, http:// sourceforge.net/projects/matplotlib/.

[7] NumPy Project Site, http://numpy.scipy.org/.

12

End to End Delay for packets received at Sink

H

Number of Packets
w

N

Q15 25 30 35 40
End to End delay (s}

Figure 4: AUVNetSim: histogram of the end-to-end delay of the packets received at the
common sink.

Figure 5: AUVNetSim: 3D scenario containing an AUV and a node-field with 16 relays.

13

