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ABSTRACT Nano-communication-based devices have the potential to play a vital role in future healthcare
technologies by improving the quality of human life. Its application in medical diagnostics and treatment
has a great potential, because of its ability to access small and delicate body sites noninvasively, where
conventional medical devices fall short. In this paper, the state of the art in this field is presented to provide
a comprehensive understanding of current models, considering various communication paradigms, antenna
design issues, radio channel models based on numerical and experimental analysis and network, and system
models for such networks. Finally, open research areas are identified for the future directions within the field.

INDEX TERMS Nano communication, terahertz, body area network, channel modeling, network modeling.

I. INTRODUCTION

In this era of envisioned unprecedented nanotechnology role
in multidisciplinary domains such as environmental, indus-
trial, biomedical and military; one of the emerging social and
scientific impact of such technology would be in healthcare
and bioengineering applications. As a promising alternative
to current medical technologies like catheters and endo-
scopes, the nano enabled devices could reach to delicate body
sites such as the spinal cord, gastrointestinal or inside the
human eye, non invasively, which have not been possible
yet with current technologies [1]. Due to the characteristics
of iniquitousness and variety of the nano-devices, different
kinds of information can be sensed and gathered together
to complete complicated tasks. The connectivity and links
between nano devices leads to the idea of nano-networks
followed by the nano-communication proposal, which will

expand the capabilities of these devices in terms of enhance-
ment in features and range of operations [2]. Among many
types of communication between nano devices, one of the
promising technique for the data exchange is Electromag-
netic based communication at terahertz band [3]. This under
utilised spectrum at the terahertz (THz) would significantly
contribute to potential future medical technologies because of
its less susceptibility to propagation effects such as scattering
and its safety advantage for biological tissues i.e., non ion-
ization [4]. By using bio-nano-sensors in medicine, e-health
monitoring system [5] can be realized, so is e-drug delivery
systems [2] with the aid of nano-robots. The ultimate goal is
to connect nano-network to the internet, by which and e-living
and e-health can be fulfilled [6].

The evolution of novel materials such as graphene
and carbon nano tubes (CNT) [7], which can work
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at THz frequencies opens up new opportunities of applying
these nano-devices inside the body. In recent years, body-
centric communication has been studied for a wide range of
frequencies [8], [9], however the size reduction requirements
make nano-scale technologies an attractive choice for future
applications of body-centric communication. Due to short
wavelength, even a minute variations in water contents and
biomaterial tissues can be detected by terahertz radiations
due to existence of molecular resonances at such frequen-
cies. Consequently, one of the emerging areas of research
is analysing the propagation of terahertz electromagnetic
waves through the tissues to develop diagnostic tools for
early detection and treatment such as abnormalities in skin
tissues as a sign of skin cancer [10]. Although there are
some limited studies in open literature with regards to nano-
communication and applicability of THz communication in
the biomedical domain [1], [5], [11]-[16]. All published stud-
ies are scattered with none encompassing all aforementioned
issues. In this paper, we are presenting a comprehensive state-
of-the-art review of nano-communication with emphasis on
biomedical applications and discussion on several research
challenges by considering various communication methods,
antenna design considerations, channel modeling aspects,
while highlighting various simulation issues and measure-
ment techniques in addition to network and system models.

The rest of the paper is organized as follows. Section II
highlights the envisioned applications for nano communi-
cation and proposed network architecture for healthcare
applications. Section III details brief discussion about var-
ious paradigms of communication among nano devices.
Section IV presents an overview of different types of nano
antennas while Section V details some of the state-of-art
in nano devices from biomedical prospective. Section VI
highlights the channel characterization at nano scale based
on simulation and measurements at terahertz frequencies.
Section VII presents the network and system model while
open research areas are presented in Section VIII. Finally,
conclusions are drawn in Section IX.

Il. ENVISIONED APPLICATIONS AND
THE NETWORK STRUCTURE
Nanonetworks have broad range of applications and can be
mainly divided into four groups: environmental, biomedical,
military and industrial [2], [5] as shown in Fig. 1.

Detailed description of the envisioned applications have
been summarised and classified in [2], as shown in Tab. 1.

TABLE 1. Overview of the envisioned applications [1], [2].
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FIGURE 1. Envisioned applications for nano communication (reproduced
from [5]).

The table clearly shows that one of the most attractive
application of nano-networks is in the biomedical fields due
to its advantages of size, bio-compatibility and bio-stability.
Nano devices spreading over the human body can monitor
the human physical movement. For example, nano pressure-
sensors distributed in the human eyes can detect the intraoc-
ular pressure (IOP) for the early diagnosis and treatment of
glaucoma to prevent vision loss [1]. At the same time, the
nano devices deployed in the bones can monitor the bone-
growth in young diabetes patients to protect them from osteo-
porosis [1]. Furthermore, nano-robots inside the biological
tissues can detect and then eliminate malicious agents or
cells, such as viruses or cancer cells, hence making the treat-
ment less invasive and real time [17]. Moreover, networked
nano-devices will be used for organ, nervous track, or tissue
replacements, i.e., bio-hybrid implants.

Similar to the traditional body-centric communication, the
nano network can also be divided into three parts: in-body,
on-body and off-body. An overview of the structure of nano-
network for healthcare domain as shown in Fig. 2 can be
summarized as [6]:

« Nano-nodes: These are the smallest and simplest nano-
devices. Due to the limited energy, limited memory and
reduced communication capabilities, they can only per-
form simple computation task and can transmit over very
short distances. The nodes could be composed of sensor
and communication units.

« Nano-routers: These are the nano-devices with slightly
larger computational resources than nano-nodes and can
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Environmental

Industrial Military

e Active Visual Imaging for Disease Diagnosis [19] [20] [21] [22] [23]
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o Cell Manipulation [40] [19] [41] [42] [43]
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Bio-Control [47] [48] [49]

Intelligent Office [6] Nano-Fictionalized Equipment [50]
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FIGURE 2. Envisioned architecture for nano-healthcare.

aggregate information from limited nano-machines and
also can control the behaviour of nano-nodes by sending
extremely simple order (such as on/off, sleep, read value,
etc.). However, this would increase their size; thus, their
deployment would be more invasive.

« Nano-micro interface: They are used to collect the infor-
mation forwarded by nano-routers and send the infor-
mation to the micro-scale devices. At the same time,
they can send the information from micro-scale to nano-
scale. Nano-micro interfaces are hybrid devices not
only able to communicate in the nano-scale using the
nano-communication techniques shown in Section III
but also can use classical communication paradigms in
micro/macro communication networks.

o Gateway: It makes the users to control or monitor the
entire system remotely over the Internet.

Ill. VARIOUS PARADIGMS OF NANO-COMMUNICATION
According to Akyildiz et al. [2], nano-communication
can be divided into two scenarios: (i) Communication
between a nano-machine and a larger system such as micro/
macro-system, and (ii) Communication between two or more
nano-devices. These devices can communicate by different
mechanism like electromagnetic, acoustic, nanomechanical
or molecular [50] efc, which will be briefly discussed in this
section.

A. MOLECULAR PARADIGMS

Molecular communication are considered as the most promis-
ing paradigm in the start of nano era to achieve the nano-
communication because there are numerous examples present
in nature to learn and study. In molecular communication,
an engineered miniature transmitter releases small particles
into a propagation medium, while the molecules are applied
to encode, transmit, and receive information [51]. Molecular
communication can be classified into several categories such
as walkway-based: molecules propagate along a predefined
pathway via molecular motors; flow-based: molecules prop-
agate in a guided fluidic medium; diffusion-based: where
molecules propagate in a fluidic medium via spontaneous
diffusion and etc. [5]. The diffusion-based molecular com-
munication (DMC), the most general and widespread scheme
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found in nature is most widely investigated in the literature.
Some of the most prominent works include mathematical
framework for a physical end-to-end channel model for
DMC [52], development of an energy model for DMC [53],
modeling of diffusion noise [54], channel codes for reliability
enhancement [55], and relaying-based solutions for increas-
ing the range of DMC [56], [57]. On the other hand, the
flow-based molecular communication (FMC) is also studied,
especially the one of communication in the circulatory
system [58], [59].

B. ACOUSTIC PARADIGM

Acoustic propagation introduces slight pressure variations in
the fluid or solid medium, which satisfy the wave equation.
The behaviour of the nano robots is relevant to their physical
properties, surrounding medium and the working frequency.
The feasibility of in vivo ultrasonic communication is evalu-
ated by Hogg and Freitas [60], where communication effec-
tiveness, power requirements and effects on nearby tissue
were examined on the basis of discussion on the principles.
Later, the nanoscale opto-ultrasonic communications in bio-
logical tissues was discussed in [17] and [61], where the gen-
eration, propagation model were studied and in line with [60]
the hazards and design challenges were investigated.

C. TOUCH COMMUNICATION PARADIGM

Based on the development of the nanotechnology, a new
paradigm of touch communication (TouchCom)! was also
proposed in [58], which use a swarm of nano-robots as mes-
sage carrier for information exchange. In TouchCom, transiet
microbots (TMs) [62]-[64] were applied to carry the drug
particles, which can be controlled and tracked by the external
macro-unit (MAU) with a guiding force [59], [65]. These
TMs would survive some time in body and their pathway
would be the channel for the information exchange while
the process of loading and unloading is the corresponding
transmitting and receiving process. A specific application,
illustrated in [58], was shown in Fig. 3 while the structure
of the applied nano-robots was shown in Fig. 4. The channel
model of TouchCom was derived by defining the propagation
delay, path loss with the angular/delay spectra of the signal
strength. Meanwhile, a simulation tool was proposed to char-
acterize the movement of the nano-robot swarm in the blood
vessel.

D. ELECTROMAGNETIC PARADIGM

As the name indicates, electromagnetic methods use the
electromagnetic wave as the carrier and its properties like
amplitude, phase, delay efc. are used to encode or decode
the information. The possibility of EM communication is
first discussed in [5] on the basis of the fact that terahertz
band can be used as the operational frequency range for
future EM nano-transceivers because of the emerging new

Here, touch means the communication (i.e., drug delivery) process is
controllable and trackable.
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FIGURE 3. Envisioned TouchCom system [58].

Sensor

T T P;:pener

J=le)e) B) )
TN

Navigator Fuel

Steering wheel Information molecules

FIGURE 4. Structure of the envisioned nano-robots [58].

materials like Carbon Nano-Tube (CNT) and Graphene [66].
In [67] the theoretical model of the nano-network whose
nodes are made of CNT was presented. Later, the channel
model for THz wave propagating in the air with differ-
ent concentration of the water vapor was presented in [15]
and the corresponding channel capacity was also studied.
Based on the characteristics of the channel, a new physical-
layer aware medium access control (MAC) protocol, Time
Spread On-Off Keying (TS-OOK), was proposed in [68].
Meanwhile, the applications of THz technology in imaging
and medical field [11], [12] has also achieved great develop-
ment and the biological effects of THz radiation are reviewed
in [16] showing minimum effect on the human body and no
strong evidence of hazardous side effects [51]. The focus of
this review paper is on EM paradigm and in next sections,
the paper will be confined only to discussions related to this
paradigm.

IV. RECENT DEVELOPMENT IN NANO-ANTENNAS

Despite numerous studies on nano-technology are being
published every year, however enabling the communication
between nano-devices is still a major challenge, which is
mainly related to the development of nano-antennas and the
corresponding electromagnetic transceiver. Reducing the size
of the traditional antenna down to a few hundreds of nano-
meters would lead to extremely high operating frequencies,
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which compromises the feasibility of electromagnetic wire-
less communication among nano-devices. Nano-antenna can
be made of either conventional material i.e. metal or novel
materials like carbon nanotube and graphene. This section is
dedicated to give brief description about these two types of
nano-antennas.

A. METALLIC MATERIAL BASED NANO-ANTENNAS

There are different types of metal based nano antennas avail-
able in literature. Metallic plasmonic nano-antenna is one of
the metallic material based nano-antennas presented in [69]
for intra-body nano-networks. A unified mathematical frame-
work was developed in this work to investigate the perfor-
mance in reception of gold-based nano-dipole antennas. The
analytical model shown in Fig. 5 was validated by COMSOL
Multi-physics simulations.

FIGURE 5. Simulation results for the network.

Another kind of metallic material antenna is the optical
metallic nano dipole antenna as presented in [70]. Five met-
als (silver, aluminium, chromium, gold, and copper) were
compared, where the correspondence of the antenna length to
the working band was studied. Also, an in-house developed
Method of Moments (MoM) based electromagnetic solver
was developed to conduct this study. The results show that
it is much more crucial to choose the proper metal in terms
of operational frequency band for nano-antenna than the
traditional ones. Besides the above general metallic nano-
antennas, metal oxide metal (MOM) techniques was also
applied for nano-antenna array [71] because of the excellent
tunnelling characteristics.

B. NANO-ANTENNAS MADE OF NOVEL MATERIALS

The new materials like carbon nanotube and graphene are
attractive choice for nano-antennas. It has been proved that
above mentioned limitation like size and communication
constraints, can be overcome by using the graphene to fab-
ricate the antennas because the wave propagation velocity in
CNTs and graphene nanoribboons (GNRs) can be up to one
hundred times below the speed of light in vacuum depending
on the structure geometry, temperature and fermi energy [72],
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leading to the fact that the resonant frequency of nano-
antennas based on graphene can be up to two orders of
magnitude below that of nano-antennas fabricated with
other materials. Recent studies has already proved that
CNT/graphene antenna can work at the THz band
(i.e., 0.1 - 10 THz); thus, the band of interest is the
most promising candidate for the EM communication
[5], [66], [73]. The CNT antenna was compared with classical
dipoles by numerical analysis [74], while the possibility of
CNT as dipole antenna was discussed, giving a mathematical
framework [75]. Reference [76] first demonstrated the perfor-
mance of the propagation of EM waves on a graphene sheet.
GNR-based nano patch antenna and CNT-based nano dipole
antenna were compared in [77], showing that graphene-based
antenna with the length of 1 um can radiate EM wave at THz
band, which agreed with the prediction in [78].

A beam reconfigurable multiple input multiple out-
put (MIMO) antenna system based on graphene nano-patch
antenna is proposed in [79], the radiation directions of which
can be programmed dynamically, leading to different channel
state matrices. For the short range communication, the pro-
posed MIMO antenna design can enlarge the channel capacity
by both increasing the number of antennas and choosing
the best channel state matrices. An equilateral triangular
patch antenna and rectangular patch antenna were designed
using graphene as the patch conductor in [80] and [81].
A log-periodic toothed nano-antenna based on graphene was
proposed in [82]. Large modulation of resonance intensity
in log-periodic toothed nano-antenna can be achieved via
turning the chemical potential of graphene.

FIGURE 6. A plasmonic nano-patch antenna based on graphene [83].

A novel graphene-based nano-antenna as shown in Fig. 6,
which exploits the behaviour of Surface Plasmon
Polariton (SPP) waves in semi-finite size Graphene Nanorib-
bons (GNRs) was proposed in [83]. By exploiting the high
mode compression factor of SPP waves in GNRs, graphene-
based plasmonic nano-antennas are able to operate at much
lower frequencies than their metallic counterparts.

V. CURRENT DEVELOPMENT OF NANO-SCALE DEVICES

This section details about some of the state-of-the-art for
nano devices in biomedical domain. Due to the developments
in micro-fabrication and nano-technologies, the limits of the
sizes and capabilities of devices have been pushed further.
A cheap Integrated Chip (IC), whose cost would be less
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(b)

FIGURE 7. The Realized IC chips. (a) Comparison of the chip with a rice
(reproduced from [85]). (b) Photo of the full-duplex transceiver
IC ©CoSMIC Lab.

than one dollar, was designed by National Applied Research
Laboratories, Taiwan using sensor fusion technologies,
shown in Fig. 7a, which is smaller than a grain of rice. A full-
duplex transceiver IC, shown in Fig. 7b was presented from
Clumnia High-Speed and mm-wave IC Lab (CoSMIC) [84]
in 2015, which was even further smaller.

The initial goal of developing small-scale devices is to
replace the existing tethered medical devices such as flexible
endoscopes and catheters because such devices could access
complex and small regions of the human body like gastroin-
testinal (GI), spinal cord, blood capillaries and at the same
time the discomfort and the tissue loss because of seda-
tion would be hugely decreased. The micro-robots voyaging
around human body were developed recently according to
same principles [51]. For example, a tiny permanent magnet,
guided inside the human body by a magnetic stereotaxis sys-
tem was proposed in [86] while a magnetically driven screw
were made to move through tissues [87]. Micro-mechanical
flying insect robots were first created in University of
California, Berkeley [88] and then later a solar-powered
crawling robot was realized in [89]. The first medical-used
capsule endoscopes, to replace the traditional ones, were
applied clinically in 2001 with the FDA’s approval. Later the
introduction of a crawling mechanism [90] and on-board drug
delivery mechanism [91] were marked as another milestone
for the development of the capsule endoscopy. A nano-scallop
capable of swimming in biomedical fluids whose size is
only a fraction of a millimetre has been developed at the
Max Planck Institute for Intelligent Systems [92], shown
in Fig. 8a and at the same time a tiny bio-bot powered by
skeletal muscle cells, shown in Fig. 8b was reported in [93].
A magnetic helical micro-swimmer was successfully targeted

VOLUME 4, 2016
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FIGURE 8. Photos of the nano-bots which can be used in human body.
(a) Nano-scallop which can swim in bio-fluids (reproduced from [92])
(b) Bio-bot powered by skeletal muscle cells ©UIUC. (c) SEM image

of the artificial bacterial flagella (reproduced from [94]).

in a wireless way to deliver a single-cell gene to human
embryonic kidney whose SEM image is shown in Fig. 8c [94].

Besides the research activities on tiny robots, there are
also investigations on other applications. A wireless radiation
detector was designed to inject into the tumour to detect
the level of the therapeutic radiation the tumour gets [95].
Applying micro-machining techniques, this dosimeter was
shrunk to 2 cm long and 2 mm wide in diameter.

VI. CHANNEL MODELING FOR NANO SCALE
COMMUNICATION AT TERAHERTZ FREQUENCIES

In order to fully exploit and increase further the potential of
nano devices in biomedical applications, the EM waveforms
propagation and accurate channel models knowledge inside
the body is necessary, which are vital to build efficient,

VOLUME 4, 2016

reliable and optimized high performances systems. It is
essentially important to create and access such a models for
achieving target link budgets, high data rates and designing
efficient transceivers and antennas including digital base-
band algorithms. Because of the limitations such as size,
complexity and energy consumption, EM communication
between nano-devices have been considered very challenging
initially [96]. However, with the advent of the carbon-based
materials like graphene and CNT, attention has been moved
to the EM communication [5], [67] slowly.

'With consideration that the communication is at nanoscale,
the study of the communication between very short range is
essential [15], [97]. Jornet et al. presented a modified Friis
formula for pathloss calculation [15] in water vapor at THz,
which has two parts: the absorption path loss and the spread
path loss. Later, a more detailed model of THz communica-
tion is proposed with the consideration of multi-ray scenario;
thus, the propagation models for reflection, scattering and
diffraction is considered [98]. At the same time, the scattering
effects of small particles was discussed with the frequency
analysis and the impulse responses [99]. Also the noise power
of the channel was obtained as [15]:

mmm=/Nmm#=@/nmmm#
B B
:@memw )

where, Tyt = T,(1 — e 47fdk/cy ig the equivalent noise
temperature due to molecular absorption; kp is the Boltzmann
constant; 7T, is the reference temperature.

The capacity of the channel was also studied to evaluate the
potential of the EM paradigm. Four different power spectral
densities (p.s.d) were studied by [15] i.e, optimal p.s.d., flat
p-s.d., the Gaussian pulse and the p.s.d. for the case of the
transmission window at 350 GHz, which concluded that for
the very short communication range, quite high transmission
bit-rates can be supported, up to Terabits per second indicat-
ing the promising future of the application of the EM mech-
anism for nano-communication. In the next subsections the
modeling of human tissues at these frequencies are presented
both numerically and experimentally.

A. NUMERICAL MODELING AT TERAHERTZ FREQUENCIES
In this section a modeling of homogenous and layered model
to investigate the wave propagation at THz band inside human
tissues is presented [100], [101], while comparing the results
with theoretical model as mentioned above.

1) HOMOGENEOUS MODEL

In [102], absorption path loss in tissues was calculated by
setting up a simple model, shown in Fig. 9, using CST
Microwave Studio [103]. As plane wave attenuates in lossy
materials, hence absorption path loss was calculated by study-
ing plane wave in tissues. In this study a tissue cube was mod-
eled by dielectric cube as shown in the Fig. 9, since the tissue
size (7Tmm x Tmm x Tmm) is comparable to THz wavelength.
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FIGURE 9. A human tissue model for plane wave propagation [100].

TABLE 2. The dielectric parameters at 1THz [100].

Tissues | Blood | Skin | Fat
€ 3.5781 2.9240 | 2.2130
€’ 2.0109 | 0.9085 | 0.5732

Tab. 2 shows the permittivity of the human tissues used in this
study, which are calculated from the optical parameters given
in [13] and [14]. The variation of E-filed for a plane wave
propagating in +z direction is monitored by equally spaced
probes, while considering a perfect matched layer boundary
condition. The comparison of analytically and numerically
calculated absorption path loss (as shown in Fig. 10) validates
the numerical model accuracy, thus paving a way forward for
more studies.

Comparison between numerical and analytical results

200 : : :
9 = blood(sim)
blood(cal)
o skin(sim)
m 150 - - -skin(cal)
3 + fat(sim)
8 - fat(cal)
= P
S o.e"
g- 100 o i
S o
= £t
=}
kS
< 508 ]
8.5 1 1.5 2 2.5

Dist/mm

FIGURE 10. Comparison of numerical and theoretical absorption pathloss
at 1 THz [100].

2) LAYERED MODEL

In addition to simple model mentioned above, studies were
also performed numerically in CST on layered structures
as well (Fig. 11) by authors of this paper. A three layered
model with the thickness of 1.5 mm (skin), 5 mm (fat) and
1.9 mm (muscle) was developed with perfectly matched layer
boundary condition. Two dipoles were used in this simula-
tion, where one was in skin and the other one was in fat.
Two different scenarios i.e., vertical and horizontal orienta-
tion of dipoles was considered. The comparison of power loss
showed the minimum effect of the layered structure.
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fat

FIGURE 11. A planar three layered human model at terahertz
frequencies [100].

B. MEASUREMENT TECHNIQUES AT
TERAHERTZ FREQUENCIES
The studies on the EM/Optical parameters of human tissues
are quite limited in the THz band of interest [13], [14], [104].
Initially, pulsed base THz time domain spectroscopy
(THz-TDS) was used to measure the absorbance of DNA, at
the band of 0.06 to 2.0 THz [105]. Later, power absorption
and far-infrared signal transmission at THz band inside ani-
mal tissues were measured using THz-TDS in [106]. Because
the performance of the cancer is different from the healthy
tissue at THz band, more and more studies are conducted on
the characterisation of the human tissues at these bands.
Recently, spectroscopy measurements of normal and can-
cer breast tissue in the range 0.1 to 4 THz were conducted
by Bowman et. al. [107], demonstrating the potential of
THz spectroscopy for the recognisation of the cancer cell.
However, most of the researches are still restricted to KHz
or GHz of range [108], [109] because the biological material
in this range is believed to have little scattering and the
study of the tissue parameters at THz band is still in its
early phase. In [13] and [14], authors show the importance
of THz pulse imaging system for characterizing biological
tissues such as skin, muscle and veins. The work done in these
papers was preliminary while considering very simple model.
The authors did not consider skin type, specific layer and
complexity of the tissue in their studies. It should be noted
that freshly excised tissue are expected to have high water
content but the comparison of dehydated skin is missing in
these references. The only plot to account for skin behavior is
absorption coefficient, which is indeed high for a fresh tissue.
To enrich the database of the parameters for biological
tissues at THz band, the human tissue samples obtained
form Blizard Institute are measured with the THz-TDS
system (shown in Fig. 12) at Queen Mary University of
London [110], [111]. A novel channel model was presented
by Abbasi et al. in [110] (authors of this paper) as a parameter
of frequency, distance and sweat ducts. Results are validated
by THz-TDS measurements of real skin with reasonably good
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FIGURE 12. Terahertz Time Domain Spectroscopy measurement setup at
Queen Mary University of London [111].
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FIGURE 14. Comparison of measured (THz TDS) and modeled path loss
inside the skin at THz frequencies [110].

agreement as shown in Fig. 14. The THZ-TDS measurements
of artificial skin (collagen) (Fig. 13), the main constitute
of epidermis was performed in [111], to investigate if it is
enough to use the parameters of collagen as the epidermis at
the band of interest by studying both dielectric constants and
channel parameters.

VIl. NETWORK AND SYSTEM MODELS

Due to the very high path-loss introduced by the intra-body
channel (Sec. VI) and in light of the very limited power of
nano-devices (Sec. V), nanonetworks or networks of nano-
devices will be needed to realize many of the aforementioned
applications (Sec. II). In this section, the state of the art and
open challenges at the network or system level are presented.
Traditional TCP/IP protocol stack model is not feasible for
implementation in nanonetworks since the TCP/IP model was
originally designed for the high processing of general purpose
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network nodes. Conversely, nanomachines nodes are limited
in power supply, processing, and communication range due
to high pathloss as mentioned above. Currently, introducing
an innovative protocol stack model that captures the specific
characteristics of nanonetworks is still in its early stages and
an active area of research. Several proposals in current litera-
ture address the nanonetworks protocol stack as the proposals
can be categorized into two main categories: No-layer models
and Layer-based models, and .

A. NO-LAYER-BASED MODELS

Layer-based protocol stack assumes that nanonetworks main-
tain a multi-tiered, dynamic, and opportunistic hierarchical
architecture that comprise nanomachines, nano-router, and
gateway. Nanomachines can be further clustered so that each
group that serves a certain body area or a certain purpose is
managed by a cluster head that will handle data propagation
to the nano-router [6]. The hierarchy tree from nanomachines
to back-end servers needs to be dynamic; connectivity from
nanomachines to cluster heads and from cluster heads to
gateways can change according to context and availability.
Thus, nano-routers can opportunistically connect to the
nearest gateway in order to send data. Nano-routers and
cluster heads are assumed to have relatively higher process-
ing power and larger bulks. Sizeable nano-routers may not
feasibly reside within nanonetworks for some applications
or environments under monitoring due to several factors,
such as the environment structure, scalability and placement
issues. Hence, these concerns can be addressed by assuming
one-tiered nanonetworks, which consider identical network
nodes with low processing and power capabilities, and simpli-
fied networking models. Specifically, no-layer-based models
enforced by the limitations of the nanomachine nodes moti-
vate the single layer paradigms, where the function of the
Datalink, Network, Transport, and Application layer is com-
bined in the Physical layer mainly through signal flooding
communication. Signal flooding abolishes the requirements
for node addressing, identification, routing and forwarding
schemes. The work in [112] proposed a no-layer-based net-
working paradigm and flooding data dissemination scheme.
The proposed scheme, though simplifying the communica-
tion model, overlooks the cost of classification and real time
signal processing of each packet. Additionally, it assumes
fixed structure and static node deployment. The nanonodes
typically display random behavior. Nanonetworks can move
around the human body for certain health applications, and
therefore may need to be associated with different neighbors
and thus may not always acquire fixed structure. Compara-
tively, nanonetworks deployed for environment monitoring
may get affected by wind movement, which will affect their
location, and therefore may associate with different neighbors
along their path.

B. LAYER-BASED MODELS

Some proposals attempted to implement a minor form
of TCP/IP model regardless of the constraints of the
employment of TCP/IP model in nanonetworks, while other
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proposals suggested the use of layer-based models specifi-
cally designed for nanonetworks. In the next section, a net-
working layer-based technique is presented, by following a
bottom-up approach.

1) LINK LAYER
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Synchronization: The transmission of low-power signals
at very high frequencies, and potentially using very high
data-rates, leads to many synchronization challenges.
Tight synchronization between the transmitter and the
receiver is needed to guarantee the proper detection of
individual symbols. Unfortunately, we cannot simply
reuse existing solutions for high-frequency communi-
cation schemes, such as Impulse Radio Ultra-wide-
band (IR-UWB), Millimeter Wave (mm-wave) or Free
Space Optical (FSO) systems, mainly because these rely
on the use of high-speed Analog-to-Digital (ADCs).
The fastest existing ADC to date can only sample at
rates below 100 Giga-Samples-per-second (GSas) [113],
much below the Nyquist rate for THz signals.
Furthermore, its size and power consumption make it
inadequate for nano-devices. In addition to the lack of
ADCs, the local clock [114] at different nano-devices
might oscillate at slightly different frequencies, which
can result in a significant clock skew between the
transmitter and the receiver.

To overcome these limitations, new time and frequency
synchronization algorithms are needed. On the other
hand, fully analog synchronization schemes can be
developed to overcome the need for faster and smaller
ADC:s. For example, in [115], a synchronization scheme
for pulse-based THz-band communications is designed
and analyzed. The proposed scheme is aimed at itera-
tively estimating the symbol start time and reducing the
observation window length for the symbol detector, and
it can be implemented with a combination of voltage-
controlled delay (VCD) lines [116] and Continuous-
Time Moving-Average (CTMA) symbol detectors [117].
Another option could be to take advantage of sub-
Nyquist sampling strategies, which could then be imple-
mented with existing low-power slower ADCs. For
example, in [118], a low-sampling-rate (LSR) synchro-
nization algorithm is developed, by extending the theory
of sampling signals with finite rate of innovation in the
communication context and exploiting the annihilating
filter method.

Error Control: The combination of low trans-
mission power, molecular absorption noise and
multi-user interference in nanonetworks lead to
error-prone wireless links. Traditional error control
schemes, such as Automatic Repeat reQuest (ARQ) or
Forward Error Correction (FEC) techniques, need to
be analyzed in light of the peculiarities of nanonet-
works. For example, on the one hand, Automatic Repeat
reQuest (ARQ) mechanisms might not be suited for
nanonetworks due to the energy limitations of nano-

devices, which require nanoscale energy harvesting
mechanisms to operate [119], [120]. The very long
time needed to harvest enough energy to retransmit
a packet make render the data useless. On the other
hand, the majority of Forward Error Correction (FEC)
mechanisms are just too complex for the expected capa-
bilities of the nano-devices. As described in [5], the
number of nano-transistors in a nano-processor limits
the complexity of the operations that it can complete.
Even with current processing technologies, the time
needed to encode and decode a packet can be much
longer than the packet transmission time.

To overcome these limitations, new error control strate-
gies are needed. On the one hand, much simpler coding
schemes tailored both to the capabilities of nano-devices
and the peculiarities of the THz-band channel can be
developed. In this direction, the use of low-weight Error
Prevention Codes (EPCs) has been proposed [121].
More specifically, it has been shown that the reduction
of the average number of logic ones transmitted per
packet results in a decrease in the overall molecular-
absorption noise and interference powers. However, the
reduction of the coding weight requires the transmis-
sion of longer data packets, which results in a higher
energy consumption both at the transmitter and the
receiver when compared to that of uncoded transmission
[122]-[124]. For this, on the other hand, there is a need
for a unified cross-layer error-control analysis, tailored
to the peculiarities of nanonetworks both on the nano-
device side and the communication side. For exam-
ple, in [125], a mathematical framework is developed
and used to analyze the tradeoffs between Bit Error
Rate (BER), Packet Error Rate (PER), energy consump-
tion and latency, for different error-control strategies,
namely, ARQ, FEC, EPC and a hybrid EPC.

o Medium Access Control: New Medium Access Con-

trol (MAC) protocols are needed to regulate the channel
access in nanonetworks. In traditional wireless commu-
nication networks, the main bottleneck at the link layer is
posed by the limited available bandwidth, which forces
nodes to either aggressively contend for the channel or
follow tight time scheduling schemes. In nanonetworks,
the THz-band channel provides nano-devices with a
huge bandwidth and relaxes the need to “fight” or
wait for the channel. In addition, such very large band-
width results in very high bit-rates and, consequently,
very short transmission times, which further minimize
the collision probability. However, the low transmission
power of THz nano-transceivers, the high path-loss at
THz-band frequencies and the limited and fluctuating
energy of nano-devices, still require the use of MAC
protocols to regulate the link behavior.

In this direction, several new protocols have been
recently proposed. In [68], the Physical-layer Aware
MAC Protocol for Electromagnetic Nanonetworks
(PHLAME) was proposed, effectively becoming the
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first MAC protocol for ad-hoc nanonetworks. In this
protocol, nano-devices are able to dynamically choose
different physical layer parameters based on the chan-
nel conditions and the energy of the nano-devices.
Similarly, in [126], the first centralized MAC pro-
tocol for nanonetworks was proposed, in which a
nano-controller would determine the best communica-
tion parameters for the nano-devices. In both cases,
a transmitter-initiated hand-shake was required, which
would eventually result into a low channel utilization.
In [127], areceiver-initiated MAC protocol for nanosen-
sor networks was proposed. The developed protocol
is based on a distributed scheduling scheme, which
requires the nodes to perform a distributed edge coloring
algorithm. However, due to the very limited compu-
tational resources of individual nano-devices, it seems
more plausible to leverage the pulse-based physical layer
to interleave users in time, rather than performing dis-
tributed scheduling algorithms. More recently, in [128],
ajoinit link-layer synchronization and MAC protocol for
THz communication networks has been presented. The
protocol relies on a receiver-initiated handshake as a way
to guarantee synchronization between transmitter and
receiver. In addition, it incorporates a sliding window
flow control mechanism, which combined with the one-
way handshake, maximizes the channel utilization.

C. NETWORK AND TRANSPORT LAYERS

e Relaying: At THz-band frequencies, the very large avail-
able bandwidth comes at the cost of a much higher
path-loss than that of lower frequency bands. Because
of the very limited transmission power of nano-devices,
this results into very short transmission distances (much
below one meter). However, in the aforementioned
applications, very large node densities are needed and,
thus, intensive relaying is expected. Traditional anal-
ysis of optimal relaying studies [129], [130] are not
applicable to nanonetworks, because they do not take
into account the peculiarities of the THz-band channel.
At THz-band frequencies, the benefit of relaying is
twofold. As in any wireless communication system, the
transmission power and, thus, the energy consumption
can be reduced by having several intermediate hops
between the transmitter and the receiver. In addition,
due to the unique distance-dependent behavior of the
bandwidth in the THz band, the reduction of the trans-
mission distance results into the availability of a wider
transmission band because fewer absorbing molecules
are found along the path. Larger bandwidths result in
faster data rates and, thus, can help to further reduce the
energy-per-bit consumption, the packet transmission
time, and the collision probability. However, by increas-
ing the number of hops, the overhead in the network
increases. All these motivate the development of new
relaying strategies, which take into account both the
possibility to utilize active nodes as well as novel passive
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relaying nodes based on dielectric mirrors [131].
Routing: New routing protocols for multi-hop com-
munication in nanonetworks need to be developed by
taking into account the nano-device capabilities and the
behavior of the the lower layers in the protocol stack.
Routing information across multiple links with unknown
relaying nano-nodes is a non-trivial task. First, as just
discussed, the distance and actual molecular composi-
tion of the channel needs to be taken into account when
making routing decisions. Taking the channel conditions
into account at the routing metric is not new, but rather
common in cross-layer routing solutions. The difference
in this case is the origin of such channel change, i.e.,
molecular absorption, which results in higher energy
consumption and longer transmission delays. In this
direction, in [132], a new routing framework was devel-
oped, based on three main tasks, namely, the evalu-
ation of the probability of saving energy through a
multi-hop transmission, the tuning of the transmission
power of each nanosensor for throughput and hop dis-
tance optimization, and the selection of the next hop
nanosensor on the basis of their available energy and
current load. Still, however, an additional challenge
comes from the very limited computational resources
of nano-devices. This requires the development of
novel strategies different from the traditional “‘store and
forward™ protocols. For example, as in Networks-on-
Chip (NoC) [133], [134] or optical core net-
works [135], [136], it might not be worth to “wait’ until
identifying the best route for a packet, but rather keep
forwarding it even if it might not follow the optimal path
to the destination.

Reliable Transport: Last but not least, the interconnec-
tion of intra-body nanomachines with wearable devices
and ultimately the Internet will require the develop-
ment of end-to-end solutions that can guarantee the
reliable transport. On the one hand, new extensions to
the Transport Control Protocol (TCP) protocol need to
be developed. It is a fact that the majority of traffic over
the Internet is transported by TCP. Therefore, it seems
reasonable to modify and improve the performance of
TCP while keeping backwards compatibility, rather than
directly proposing radically new protocols. New algo-
rithms to control the behavior of the congestion window
size in TCP are needed, which take into account the
huge available bandwidth in the THz-band and the near-
zero memory of the nano-devices along the path. These
could be estimated in a cross-layer fashion, following
a similar approach as in ultra-high-speed wired optical
communication networks [137]. On the other hand,
in the applications in which the use of classical transport
layer solutions is not required, fundamentally different
protocols can be developed. In nanonetworks, robust
transport layer solutions are necessary to deal with
frequent device failures, disconnections due to energy
fluctuations, or molecular channel composition transient
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effects. All these motivate also the development of cross-
layer solutions [138], which can jointly capture the
device, communication and networking peculiarities.

VIil. OPEN RESEARCH CHALLENGES

With the growing interest in nano-technology especially in
biomedical domain and their advantage to provide substantial
flexibility and improvement in healthcare for diagnostics and
treatment of more diseases will likely increase their usage in
time. Some of the most important open research topics in this
domain are given as follows:

e Human tissue parameters extraction at terahertz
frequencies: Although some optical parameters are pro-
vided at such frequencies but the study of the tissue
parameters at THz band is still in its infancy. Hence a
thorough database of tissue properties is needed at such
frequencies based on the large number of samples to
better understand and model the electromagnetic wave
behavior inside these materials, which is very important
for developing efficient and accurate nano based health
system.

o Safety constraints, Heating problems at THz frequen-
cies: Safety issue is always the main consideration about
nano-network, especially when the nano-devices are
applied to the in-body scenario. Hence, the study of the
THz wave heating effects on the human tissue should
be conducted to make the standard and requirement for
communicating or sensing.

o Interaction between the nano-devices and the surround-
ing environment: From the study of the models of nerve
system and skin, it seems dispensable to study the
detailed model when the size of the functional devices
goes down to milli/nano-scale. The interaction between
the environment and the devices should be study to make
sure the devices work in a desired manner.

o Hybrid nano-communication systems: Since there
are lots of communication paradigms for nano-
communication, the study on interaction between two
different communications paradigm is still missing. It is
generally believed that by merging all the communica-
tions together the nano-network would be much more
flexible and powerful. Hence studies on hybrid commu-
nication mechanism and their feasibility is much needed
future direction.

o Architecture and protocols: Different challenges against
protocols design are still being investigated with no cur-
rently fully developed solutions. Currently, introducing
an innovative protocol stack model that captures the
specific characteristics of nanonetworks is still in its
early stages and an active area of research.

o Antenna design and propagation models: In order to
support high data rates and overcome very high pathloss
at such frequencies, a compact large antenna array
with multi-band and ultra-broadband characteristics
is needed. Also, in such networks, molecular noise,
nano-particle scattering and multipath fading are addi-
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tional parameters on top of high pathloss, which affect
signal propagation. Hence an accurate channel model,
taking into account all propagation effects still need to
be developed, which are very important for accurate link
budget calculation needed to develop highly efficent and
reliable systems.

e Massive MIMO and cooperative communication:
To overcome the high pathloss issues and other prop-
agation hurdles like scattering and multipath fading,
massive MIMO and cooperative communication based
methods are very promising. However, the knowledge
of spatial correlation inside the body medium should be
investigated for facilitating the implementation of these
techniques and understanding the maximum achievable
channel capacity.

o Security: Security of health related information is very
critical and ensuring the secure transmission especially
between nano- and micro-device interface and gate-
way is very crucial. Therefore, robust, security (includ-
ing authentication and privacy) ensuring algorithms are
essential for confidently using these devices.

o Nano sensor integration: Several nano-devices are
developed and tested under strict laboratory condition,
but integrating all nano components including sensor,
battery, memory efc is still an open challenge, which
needs great attention.

IX. CONCLUSION

In this paper, the state-of-the-art and comprehensive review
in the domain of nano-scale electromagnetic communication
specifically for biomedical applications is presented. Vari-
ous studies have been analysed and discussed covering the
theoretical basis of communication mechanisms among nano
devices, state-of-the-art in antenna design, human tissue and
the channel modeling based on numerical and experimental
settings. In addition, we highlighted in the paper the current
state of network and system modeling specifically aimed
at nano-scale communications and linked those to future
directions and needed research solutions to overcome current
challenges. Considering the expected future growth of nano
technologies and their potential use for the detection and
diagnosis of various health related issues, the open research
challenges for these potential networks (in the medium to
long term) are highlighted and presented to clearly demon-
strate the necessary steps the scientific, engineering and wider
community needs to take to further enhance the current status
and ensure applicability not only in the biomedical domain
but a broader range of deployments.
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