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Abstract—In the near future, it is envisioned that intra-body
nanosensing systems will provide fast and accurate disease diag-
nosis and treatment. Recent work on intra-body communications
has focused on understanding the propagation of electromagnetic
(EM) signals in biological media; however, the photo-thermal
effects of the EM waves on biological tissues are not as well
understood, despite the risk of damaging the tissues. In this
paper, we consider an intra-body nanosensing system where
active nanoparticles (NPs) are injected into blood vessels. Using
stochastic geometry, we analytically model the photo-thermal
effect on red blood cells (RBCs) induced by EM waves of NP
transmissions. Numerical results validate the proposed analytical
model and provide insights into the safety of such systems.

I. INTRODUCTION

Novel nanosensors enabled by nanotechnologies are able to
detect various types of events at the nanoscale with unprece-
dented accuracy. Intra-body nanosensing systems, which op-
erate inside the human body in real time, have been proposed
to provide fast and accurate diagnosis and treatment of diverse
diseases ranging from neuronal disorders [1] to different types
of cancer [2], all directly from blood. In such systems, bio-
compatible nanosensors injected or implanted in the human
body are configured to transmit the sensed information to a
common sink, receive commands from a remote controller, or
coordinate joint actions when needed [3].

In many of such intra-body nanosensing systems, nanopar-
ticles (NPs) radiate electromagnetic (EM) waves, either pas-
sively (e.g., gold NPs) or actively (e.g., injected nanoma-
chines). As a result, molecules that are present in the medium
are excited by EM waves. An excited molecule internally vi-
brates, i.e., its atoms show periodic motion while the molecule
as a whole has constant translational and rotational motions.
As a result, part of the energy of the propagating wave is
converted to kinetic energy [4]. From the communications
perspective, such conversion results in signal loss. On the other
hand, vibrating molecules can induce increase in the cells tem-
perature, as “trapped” molecules trying to vibrate suffer from
friction. The temperature increase may be harmful to healthy
biological cells based on their photo-thermal sensitivity.

Intuitively, the temperature increase of a biological cell
depends on the density of NPs that are radiating EM waves
and the time that the cell is exposed to the EM waves. More
heat may be generated at a cell when there are more NPs
nearby. Additionally, longer radiating times of NPs means
more accumulated kinetic energy at the cell. Cumulative
Equivalent Minutes at 43 ◦C (CEM43) is the accepted metric

for thermal exposure (temperature and time of exposure) that
correlates well with thermal damage in a variety of tissues [5].
Therefore, before injecting/implanting NPs into the human
body, it is important to quantitatively understand these effects
so that they can be predicted and controlled, and potential
tissue damage can be avoided.

This can be done using simulations, with specific tissue
compositions and NP configurations. In [6], based on deter-
ministic models, the authors analyzed the heating effects due
to single as well as multiple NPs radiating EM waves, and
simulated a case study of the temperature increase in red blood
cells by means of COMSOL simulations [7]. Alternatively,
this can be done analytically based on stochastic models. The
latter choice is attractive: if we can develop a tractable ana-
lytical framework to model the problem, then the temperature
increase in human tissues can be quickly determined under
various parameter configurations.

Assuming that the spatial distributions of biological cells
and NPs can be modeled as point processes [8], it is possible
to analyze the intra-body nanosensing system using stochastic
geometry [9]. Stochastic geometry has already played an
important role in modeling wireless networks, e.g., analyzing
the distribution of interference and the signal-to-interference-
plus-noise ratio (SINR) in cellular networks [10].

In this paper, we stochastically model the temperature in-
crease of a cell (induced by EM radiation from NPs) assuming
that cells and NPs are distributed according to Poisson Point
Processes (PPPs) within their surrounding biological medium.
Specifically, we consider the temperature increase of RBCs
induced by EM radiation from active NPs injected into the
blood vessels. We assume that the NPs operate at visible
optical frequencies 400–700 THz, which is the case for the
majority of NP-based nano-biosensing systems. The main
reason for this is the relatively small absorption loss at visible
optical frequencies in biological tissues, which are mostly
water (by volume, up to 95% of blood plasma is water).

This paper makes the following contributions.
• We derive the line-of-sight (LOS) probability between an

NP and a typical RBC so we can model the intensity of
incident EM waves at the RBC.

• We derive the Laplace transform, expectation, and vari-
ance of the temperature increase at a typical RBC.

• Using the Laplace transform and LOS probability, we
derive an approximate closed-form expression for the
distribution of the temperature increase of the RBCs.
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Fig. 1: System model for intra-body EM communications (a) with
passive reflecting nanoparticles and (b) with active nanomachines.

• We validate our models against numerical results.
The above contributions help us quantitatively and analytically
understand the temperature increase of RBCs induced by EM
waves from active NPs, so that the operation of intra-body
optical wireless communications can be performed without
damaging RBCs. Note that the analysis can be modified to
consider the passive NP case by accounting for the contribu-
tion of the background EM field (that is used to excite the
NPs) to the photo-thermal effect.

The remainder of the paper is organized as follows. In
Sec. II, we present the system model. In Sec. III, we analyze
the temperature increase of RBCs. In Sec. IV, we present
numerical results to validate the analytical models and provide
insights on nanosensing system design. We conclude in Sec. V.

II. INTRA-BODY NANOSENSING SYSTEM MODEL

We consider an intra-body nanosensing system in which
NPs are injected into blood vessels. Fig. 1 shows two examples
of NPs that operate in blood vessels: passive NPs [Fig. 1(a)]
and active NPs [Fig. 1(b)]. The latter are also referred to
as nanomachines. In passive NP operation, the system uses
passive reflecting NPs that are excited by an external source;
while in active NP operation, NPs are equipped with nano-
antennas that can radiate EM waves by themselves. With bio-
compatible NPs injected into the blood stream, we study the
temperature increase of blood cells induced by EM waves.
Blood is composed of living cells (red blood cells [RBCs] and
white blood cells [WBCs]) and non-living matrix, i.e., blood
plasma. Here we ignore WBCs since WBCs comprise less than
1% of blood by volume, and some WBCs are transparent, i.e.,
they have similar optical properties as that of plasma [17].
As a result, the blood is assumed to be composed of RBCs
immersed in homogeneous plasma and we focus our analysis
on the temperature increase of RBCs.

A. Geometric Assumptions
We model the spatial locations of RBCs and NPs as 3D

homogeneous PPPs. A PPP defined in R3 is a random process
in which the number of points Φ in a bounded Borel set B ⊂
R3 has a Poisson distribution [9]:

P(Φ(B) = k) =
Λk

k!
e−Λ, k = 0, 1, 2, ... (1)

where Λ =
∫
B λ(x)dx is the expectation of the Poisson

random variable for some intensity function λ(x). If λ(x) is

constant, i.e., λ(x) = λ, the PPP is said to be homogeneous.
In the remainder of the paper, let Φc and Φp denote the PPPs
of RBCs and NPs, respectively; and λc and λp denote the
corresponding intensities.

Throughout this paper, we focus our analysis on a randomly
selected typical cell that, without loss of generality, we assume
is located at the origin o of R3. This is permissible in a
homogeneous PPP by Slivnyak’s theorem [9].

B. LOS Model

Due to cell absorption, the EM waves that pass through
cells have very weak strength. Moreover, there is no significant
diffraction/scattering since the size of the cells is much larger
than the visible light wavelength, i.e., several micrometers
(µm) vs. hundreds of nanometers (nm). As a result, the heat
generated by blocked NPs may be very weak and we focus
only on the heat induced by LOS EM waves.1 It is noted that
obstacles that block the LOS path can be either RBCs or NPs.

We derive the LOS probability expression between a ran-
domly picked NP and the typical RBC separated by distance
d. Since an obstacle can be either another RBC or another
NP, the obstacle point process is the superposition of point
processes of the RBCs and NPs, i.e., obstacles can still be
modeled as a homogeneous PPP with intensity λo = λc + λp.
For the LOS probability model, we assume that each obstacle
oi has independent radius roi with probability density function
(PDF) fro(x) defined in [rmin

o , rmax
o ]. The derivation of the LOS

probability is similar to [14], but extended to 3D PPPs. We
thus omit the derivation but present the conclusion as follows.

Lemma 1. The LOS probability between an NP and
an RBC with distance d is pL(d) = c1e

−c2d, where
c1 = exp

(
− 4

3πλoE[r3
o]
)

and c2 = πλoE[r2
o]. �

C. Antenna Propagation Pattern Models

Antenna model of NPs can be either omni-directional or
directional. An omni-directional antenna pattern has uniform
antenna gain over all directions and a directional antenna has
the ability to concentrate the radiated power in a specific direc-
tion. For tractability, we consider a cone radiation pattern with
main lobe approximated by a right circular cone. The antenna
gain is denoted by G. Under our directional cone antenna
model, we assume that the antenna boresight of a randomly
selected NP is uniformly distributed over 360◦ × 360◦. It is
easy to verify that the antenna gain of a random NP is

G =

{
gmn, with probability 1−cosψ

2 , amn

gsd, with probability 1+cosψ
2 , asd,

(2)

where gmn and gsd are the main and side lobe antenna gains,
respectively; and ψ is half of the main lobe beam width. Fig. 2
shows an example of the directional antenna gains of a cone

1Recent research has revealed that some tissue cells (e.g., RBCs) actually
act as lenses that focus the EM waves in a very short range after passing
through a cell [11], [12], [13]. However, due to their short range, we
expect that the temperature increase induced by these focused EM waves is
significantly smaller than that induced by the LOS EM waves. For simplicity,
we ignore the focus effect in this paper and leave it for future research.
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Fig. 2: Main and side lobe gains in the cone antenna model.

antenna model. Note that the main and side lobe gains satisfy
the condition that amngmn + asdgsd = 1.

D. Temperature Increase Model

Due to the heat dissipation effect, when a cell’s temperature
goes higher than the medium’s temperature, the heat energy
accumulated at the cell starts to dissipate to the medium. As a
result, the temperature change of a cell at some specific time
can be modeled as

∆Ttot = ∆T − ∆̃T , (3)

where ∆T is the temperature increase induced by EM ra-
diation, and ∆̃T is the temperature decrease due to heat
dissipation. In this paper, we only focus on analyzing ∆T ,
but will model the dissipation effect in future work so that we
can understand how the temperature evolves over time. Note
that, we may approximate ∆Ttot ≈ ∆T in a very short time
interval; therefore, ∆T can be considered as an upper limit on
the temperature increase.

Given a typical cell with absorption cross section σa (area),
the heat power delivered by an NP r away is [15]

q(r) = σaI(r), (4)

where I(r) is the irradiance of the illumination with dimension
power per area (power density). The irradiance I(r) is directly
related to electric field with the equation I(r) = cmεm

2 |E(r)|2,
where E(r) is the electric field, cm is the wave speed in the
medium, and εm is the absolute permittivity of the medium.
When we consider the medium to be homogeneous, the
irradiance of the illumination also relates to the transmission
power Pt of the NP that

I(r) = G Pt

4πr2
e−αar, (5)

where αa is the absorption coefficient of the medium.
The temperature increase of the typical cell induced by the

radiation of the NP is modeled as

∆T (t) =
q(r)t

ccmc
=

σat

ccmc
I(r), (6)

where t is the NP’s radiation time and cc and mc are the cell’s
specific heat capacity and mass, respectively.

Note that, due to their size and energy constraints, we as-
sume that NPs transmit very short pulse signals with duration
ton in a transmission period of duration tp. Thus, the maximum
temperature increase induced by a single NP in one transmis-
sion period is achieved at t = ton, i.e., ∆Tmax = ∆T (ton).

When there are multiple NPs nearby, the total temperature
increase depends on each NP’s transmission timeline. If the
transmission periods are aligned, e.g., the system uses passive
reflecting NPs that are excited by a common external source
[Fig. 1(a)], then the temperature increase is still maximized
at t = ton. However, if the NPs’ transmissions are not
aligned, e.g., the system uses unsychronized active nanoma-
chines [Fig. 1(b)], then the situation is slightly different.
Since inactive NPs can be removed by independent thinning
according to the duty cycle ton

tp
, the effective NPs still form

a homogeneous PPP Φp̄ with intensity λp̄ = ton
tp
λp. Given the

effective NP intensity λp̄, the total temperature increase in time
duration ton is

∆T =
∑
k∈Φp̄

Bkc3Gk
e−αar

r2
k

, (7)

where c3 = σatonPt
4πccmc

, rk is the distance from NP k to the RBC,
and Bk is a Bernoulli random variable with parameter pL(rk).

III. TEMPERATURE INCREASE ANALYSIS

In this section, based on the system model introduced in
Sec. II, we analytically derive the temperature increase of
a typical RBC induced by EM radiation from the active
NPs. Specifically, we derive the Laplace transform of ∆T ,
i.e., L∆T (s). Given L∆T (s), we can gain insights into the
statistical properties of ∆T .

Let rc denote the radius of the typical cell. We have the
following conclusion regarding the Laplace transform of ∆T .
The derivation can be found in Appendix A.

Proposition 1. The Laplace transform of ∆T is given as

L∆T (s) = E1e
Lmn(s)+Lsd(s), (8)

where E1 = exp
(
−4πλp̄c1

e−c2rc

c32
(c22r

2
c + 2c2rc + 2)

)
,

Lmn(s) = 4πamnλp̄c1
∫
r>rc

r2e−c2re−sc3,mr
−2e−αar

dr, Lsd(s)

= 4πasdλp̄c1
∫
r>rc

r2e−c2re−sc3,sr
−2e−αar

dr, c3,m = c3gmn,
and c3,s = c3gsd. �

In Proposition 1, we assume that NPs are equipped with
directional antennas. When omni-directional antennas are used
(G = 0 dB), the Laplace transform of ∆T is simplified to

L∆T (s) = E1 · e4πλp̄c1
∫
r>rc

r2e−c2r exp(−sc3r−2e−αar)dr.

Moments of a random variable can be determined from its
Laplace transform. Denote by X a random variable with PDF
fX(x). Recall that from the definition of Laplace transform,
we have LX(s) =

∑∞
n=0

(−1)nMn

n! sn. The nth moment of X
can thus be determined as

Mn = (−1)nL(n)
X (s)|s=0, (9)

where L(n)
X (s)|s=0 is the nth order derivative of LX(s) eval-

uated at s = 0. In other words, given the Laplace transform,
statistical properties of a random variable can be uniquely
determined.
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For example, mean and variance are determined by the first
and second order derivatives of L∆T (s), which are derived as

L(1)
∆T (s) = −4πλp̄c1L∆T (s)×(

amnc3,m

∫
r>rc

e−(c2+αa)r exp(−sc3,mr−2e−αar)dr

+ asdc3,s

∫
r>rc

e−(c2+αa)r exp(−sc3,sr−2e−αar)dr

)
,

and

L(2)
∆T (s) = −4πλp̄c1L(1)

∆T (s)×(
amnc3,m

∫
r>rc

e−(c2+αa)r exp(−sc3,mr−2e−αar)dr

+ asdc3,s

∫
r>rc

e−(c2+αa)r exp(−sc3,sr−2e−αar)dr

)
+ 4πλp̄c1L∆T (s)×(
amnc

2
3,m

∫
r>rc

r−2e−(c2+2αa)r exp(−sc3,mr−2e−αar)dr

+ asdc
2
3,s

∫
r>rc

r−2e−(c2+2αa)r exp(−sc3,sr−2e−αar)dr

)
.

It can be verified that L∆T (s)|s=0 = 1. The two derivatives
evaluated at s = 0 are

L(1)
∆T (s)|s=0

=− 4πλp̄c1(amnc3,m + asdc3,s)

∫
r>rc

e−(c2+αa)rdr

=− 4πλp̄c1(c2 + αa)
−1c3e

−(c2+αa)rc ,

(10)

and

L(2)
∆T (s)|s=0 =

(
4πλp̄c1(c2 + αa)

−1c3e
−(c2+αa)rc

)2

+ 4πλp̄c1(amnc
2
3,m + asdc

2
3,s)

·
(
r−1

c e−(c2+2αa)rc − (c2 + 2αa)Ei((c2 + 2αa)rc)
)
,

(11)

where Ei(x) is the exponential integral, i.e., Ei(x) =∫∞
x
t−1e−tdt. The mean and variance of ∆T are as follows.

E[∆T ] = −L(1)
∆T (s)|s=0 = 4πλp̄c1(c2 + αa)

−1c3e
(c2+αa)rc ,

(12)
Var(∆T ) = L(2)

∆T (s)|s=0 − (−L(1)
∆T (s)|s=0)2

= 4πλp̄c1(amnc
2
3,m + asdc

2
3,s)

·
(
r−1

c e−(c2+2αa)rc − (c2 + 2αa)Ei(−(c2 + 2αa)rc)
)
,

(13)

Note that, although moments of a random variable can be
directly determined from its Laplace transform, derivation of
the distribution of the random variable is not straightforward.
In Sec. IV, we present a numerical example in which the dis-
tribution of ∆T is determined based on some approximations.

IV. NUMERICAL RESULTS

Here, we validate our analytical models through numerical
analysis, and explore the effect of different parameters, i.e., NP
intensity and transmission power, on the temperature increase
of a typical cell. As we have mentioned, the NPs are assumed

TABLE I: List of abbreviated notation

Parameter Value
Nanoparticle transmit power (Pt) 1 µW

EM wavelength 500 nm
Signal duration (ton) 1 ms
Cell intensity (λc) 5 × 106/µl

Cell radius (rc) 2.78 µm
Cell specific heat capacity (cc) 3.22 J/g/◦C

Cell mass (mc) 101.25 × 10−12 g
Cell absorption cross section (σa) [16] 3.1 µm2

Plasma absorption coefficient (αa) [17] 0.06 mm−1

Plasma specific heat capacity 3.93 J/g/◦C
Plasma refractive index 1.345

to be active, i.e., they have energy reserved (for example, from
energy harvesting [18]) that enables them to radiate EM waves
for communications purposes. Therefore, our numerical results
investigate the temperature increase of RBCs induced by active
EM radiation from NPs.

A. Simulation Setup

RBCs compose 45% of blood on average [19]. A typical
human RBC has a biconcave plate geometry with diameter
of approximately 6.2−8.2 µm and a thickness at the thickest
point of 2−2.5 µm. In this paper, we assume that RBCs form a
homogeneous PPP with intensity λc = 5× 106 RBCs/µl [19].
For analytical convenience, we approximate the RBCs by
spheres [12] with fixed radius rc = 2.78 µm. NPs have
the shape of sphere and are also distributed according to a
homogeneous PPP. Moreover, we assume that the size of NPs
are the same as that of RBCs, i.e., rp = rc. Therefore, the
obstacles that may block EM wave propagation have constant
radius rc with intensity λo = λc + λp.

For illustration, we assume that NPs radiate EM waves with
a 500 nm wavelength. The antenna pattern has gmn = 3 dB
main lobe gain and beamwidth ψ = 60◦. The parameters amn,
asd, and side lobe gain gsd can be determined accordingly from
(2). Other parameters are listed in Table I. The RBC mass
in Table I is determined assuming an RBC density of 1125
kg/m3. Note that in the simulations, an RBC is heated up if it
is exposed to direct EM radiation of an active NP.

B. Numerical Results

1) Temperature Increase vs. NP Intensity: We first validate
the mean and variance expressions for the temperature increase
derived from the Laplace transform: we compare the mean
and variance of ∆T derived in Sec. III to those obtained from
simulations for different NP intensities. The results in Fig. 3(a)
and Fig. 3(b) show the mean and standard deviation (STD)
of ∆T , respectively. We make three observations about these
results. Firstly, we can see that the numerical results from
the derived analytical expressions align with the simulation
results. Secondly, given the 1 µW transmission power and NP
intensities of 50−500 NP/µl, the average temperature increase
over one transmission period is marginal. Thirdly, the mean
and STD of ∆T are almost linear in the NP intensity. On the
one hand, the increased NP intensity leads to reduced LOS
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Fig. 3: Variation of temperature increase with NP intensities.

probability because the NPs block each other’s signals. On
the other hand, increasing the NP intensity results in a larger
temperature increase according to (12). However, since the NP
intensity is very small compared to λc, the mean and STD of
∆T are still nearly linear in the NP intensity.

2) Temperature Increase vs. Transmission Power: The 1
µW (−30 dBm) transmission power is determined from the
signal duration and the potential energy reservation at an
NP [18]. Nevertheless, we also investigate the temperature
increase due to different transmission powers that may be
configured for an NP. Fig. 4 shows the temperature increase
with different transmission powers, from 0.1 µW to 10 µW,
with fixed effective NP intensity λp̄ = 50/µl. Note that
Fig. 4(c) shows the maximum temperature increase. The an-
alytical approximation of the maximum temperature increase
is the temperature increase at the cell that is closest to an NP.

We can observe that the mean, STD, and maximum of ∆T
increase with the transmission power. Note that, the maximum
temperature increase is still marginal (∼ 0.2 K) even with 10
µW (-20 dBm) transmission power. We can also observe that
the maximum temperature increase of the typical cell can be
approximated (upper bounded) by the temperature increase at
a cell that is closest to an NP. This also means that the severe
blockage effect of the dense RBCs prevents an RBC from
being heated by a farther NP. This observation provides us
some intuition to simply approximate the distribution of ∆T .

C. Approximating the Distribution of ∆T

According to (9), the Laplace transform of a random vari-
able uniquely determines its moments. In turn, the distribution

of the random variable may be found from the moments,
e.g., by moment matching [20]. However, as we mentioned
previously, the severe blockages prevent the typical cell from
being affected by distant NPs. In other words, the temperature
increase is largely induced by the nearest NP. It turns out that
we can develop a closed-form expression for the distribution
of ∆T with approximations inspired by this insight.

Denote by d0 the distance between the typical cell and the
nearest LOS NP. We first derive the cumulative distribution
function (CDF) of d0. Note that NLOS NPs can be removed
by independent thinning. Let r denote the distance from an
NP to the typical cell, the probability that the NP is retained
as a LOS NP is pL(r). Since the NPs with main lobes toward
the typical cell contribute significantly more heat, the NPs
with side lobes toward the typical cell can be further thinned.
Therefore, the average number of LOS NPs with main lobes
towards the typical cell within a sphere centered at the typical
cell with radius d is

Λ(d,λp̄) =

∫
|x|<d

pL(|x|)amnλp̄(dx)

=4πamnλp̄c1c
−3
2

(
2− e−c2d(c22d2 + 2c2d+ 2)

)
.

The CDF of d0 is

Fd0
(x) = P(d0 < x) = 1− e−Λ(x,λp̄). (14)

As mentioned, the total temperature increase of the typical
cell can be approximated by the temperature increase induced
by the nearest NP:

∆T =
∑
k∈Φp̄

Bkc3Gk
1

r2
k

≈ c3gmn
1

d2
0

. (15)

Therefore, the CDF of ∆T is

F∆T (x) = P(∆T < x) = P(d0 >
√
c3gmn/x)

=1− Fd0(
√
c3gmn/x) = exp

(
−Λ(

√
c3gmnx−1, λp̄)

)
.

Note that to get a closed-form expression for F∆T (x), we
also omitted the absorption term, considering the very weak
absorption ability of plasma to optical waves, and the very
small propagation distance (nearest NP).

Fig. 5 shows the distribution of the temperature increase
given λp̄ = 50 NP/µl and Pt = 1 µW. We can see that the
analytical expression provides a reasonable approximation to
the distribution of ∆T . The curves in Fig. 5 are also justified
by the fact that the ratio of NPs to RBCs is very small (50
vs. 5× 106 NP/µl), so only a very small number of RBCs get
hit directly by NPs’ transmissions.

V. CONCLUSION

Using stochastic geometry, we investigated the temperature
increase of RBCs induced by intra-body optical wireless com-
munications. Specifically, we derived the Laplace transform of
temperature increase at a cell, which allowed us to statistically
understand the photo-thermal effect induced by EM waves.
For the RBC case, we noted that the temperature increase is
marginal due to the fact that RBCs actually act as obstacles,
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Fig. 4: Temperature increases induced at different transmission power levels.
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Fig. 5: Distribution of temperature increase. The embedded plot
shows the full CDF from P(∆T < x) = 0 to P(∆T < x) = 1.

which prevent other RBCs from being heated by EM waves,
and the very small transmission power of NPs. We also note
that the analysis is generic so it is straightforward to apply the
framework to other biological tissues. In future work, we will
analyze the heat dissipation effect, the evolution of temperature
over time, and the CEM43 [5] metric noted in the introduction.

APPENDIX A
DERIVATION OF THE LAPLACE TRANSFORM OF ∆T

The Laplace transform of the temperature increase is

L∆T (s)

= E∆T

[
e−s∆T

]
= E

[
e
−sc3

∑
k∈Φp

BkGk e
−αar

r2
k

]

= EΦp,Gk

∏
k∈Φp

EBk
[
e
−sc3BkGk e

−αar

r2
k

]
= e
−4πamnλp

∫
r>rc

(
1−exp

(
−sc3,m e

−αar

r2

))
pL(r)r2dr

· e−4πasdλp
∫
r>rc

(
1−exp

(
−sc3,s e

−αar

r2

))
pL(r)r2dr

= E1 · e4πamnλpc1
∫
r>rc

r2e−c2r exp(−sc3,mr−2e−αar)dr

· e4πasdλpc1
∫
r>rc

r2e−c2r exp(−sc3,sr−2e−αar)dr

= E1e
Lmn(s)+Lsd(s),

where E1, Lmn(s) and Lsd(s) are given as in Proposition 1.
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