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Hydrodynamic theory of the Dyakonov-Shur instability in graphene transistors
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We present a comprehensive theory of the Dyakonov-Shur (DS) plasma instability in current-biased graphene
transistors. Using the hydrodynamic approach, we derive equations describing the DS instability in the two-
dimensional electron fluid in graphene at arbitrary values of electron drift velocity. These nonlinear equations
together with Maxwell’s equations are used for numerical analysis of the spatial and temporal evolution of
the graphene electron system after the DS instability is triggered by random current fluctuations. We analyze
conditions necessary for the onset of the DS instability and the properties of the final stationary state of the
graphene electron system. We demonstrate that the instability results in the coherent anharmonic oscillatory
state of the electron fluid and calculate both the spatial distribution and the power of the electromagnetic radiation
generated by the graphene transistor in the DS instability regime.
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I. INTRODUCTION

Recent years have shown a growing demand for sources
of electromagnetic (EM) radiation in the THz region of the
EM spectrum. This demand is driven by numerous existing
and potential applications of the THz technology for secu-
rity sensing and imaging systems [1,2] as well as emerging
THz communications applications [3–5]. In the communica-
tion industry, drastically increasing data transmission rates
require higher bandwidths for wireless communications [3].
These bandwidths are readily available by tapping into the
THz band of the EM spectrum [4,5], and THz wireless local
area networks are an essential part of the next-generation
6G communication systems [6,7]. Another emerging applica-
tion is THz wireless communications in nanoscale. Several
nanoscale THz communications links have been proposed
for intrabody communications as well as on-chip and chip-
to-chip links such as wireless networks on chips [8,9].
Moreover, ultramassive multiple input multiple output (UM-
MIMO) THz communication systems combat the short range
of low-powered compact THz transceivers using several array
modes for UM beam forming, UM spatial multiplexing, and
multiband communication schemes [10]. The above exam-
ples emphasize the importance of designing tunable compact
sources of THz EM radiation.

One of the promising directions in developing an on-chip
tunable THz EM source is to use plasma oscillations in the
two-dimensional (2D) electron channels of field-effect transis-
tors (FETs) [11–26]. The frequency of these oscillations lies
in the THz range if the characteristic spatial scale, which de-
termines the plasmon wave vector in the 2D channel, is of the
order of 0.1μm to 1μm. Different physical mechanisms have
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been proposed to excite, and most importantly, to maintain
radiating electron plasma oscillations in the transistor channel
with energy supplied by an external dc electric circuit. Among
them are the Dyakonov-Shur (DS) instability in asymmetric
plasmonic cavities formed in the FETs [11] and the transit
time instability in the FETs with nonuniform spatial distribu-
tion of the 2D electron velocity in the transistor channel at bias
voltages close to the saturation voltage [12]. Other mecha-
nisms include reflection-type plasma instabilities [13–15] and
the plasmonic boom instability [16,17], which occur in the
FETs with a grating gate or periodically changing geometry.

The DS plasma instability first predicted in Ref. [11]
occurs in the 2D electron channel of the FET under a dc
current bias. Plasma waves spontaneously excited in the chan-
nel are reflected from the channel boundaries defined by the
source and the drain contacts and remain confined within
the plasmonic cavity formed in the channel. When a dc
current passes through the transistor, the plasma waves travel-
ing in opposite directions experience different Doppler shifts
in frequency, which changes after each reflection from the
boundary. Dyakonov and Shur have shown that the plasma
wave amplitude may increase after reflection from the bound-
ary with a fixed total current. In this process, the energy is
transferred from the dc current to the plasma wave. If the
source and drain boundaries are made asymmetric, the plasma
wave amplitude may increase after each round trip. This pro-
cess results in the plasma instability if the plasma wave gain
exceeds the damping losses. The asymmetry necessary for the
DS instability is provided by the different reactive impedances
between the gate and source contacts, Zgs, and the gate and
drain contacts, Zgd. In the ideal case considered in Ref. [11],
one should have Zgs = 0 and Zgd = ∞. In the final stationary
state (the endpoint of instability), the power provided by the
external dc circuit should be balanced by the Joule heating
losses and the EM radiation emitted by the 2D electron system
at the plasma frequency in the THz range.
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So far, experimental efforts have mostly focused on the
search for the DS instability in semiconductor FETs [18–26].
All of these works were mostly concerned with the detection
of THz EM radiation expected in the final stationary state at
the instability endpoint. Although weak THz radiation was
recorded at bias currents exceeding some threshold value, its
attribution to the DS instability was inconclusive. The radia-
tion was mostly broadband without resonant features related
to the plasmon excitations and not tunable by the gate voltage
contrary to the theoretical predictions made in Ref. [11].

The discovery of graphene has fundamentally changed
the operating limits of electronic devices with 2D electron
channels [27]. Record-high 2D electron mobility in graphene
makes it possible to observe well-defined plasmon resonances
with a high quality factor even at room temperature [28],
opening the door to various applications of graphene plas-
monics [29–33]. In particular, recent experimental studies
have demonstrated resonant detection of THz EM radiation
in plasmonic cavities formed in graphene FETs [34]. In an-
other recent experiment, it was shown that the interaction
of the incident THz EM radiation with the plasmons in the
current-biased graphene transistor structures with a grating
gate results in the amplification of the THz radiation [35].
These results justify the growing interest in the DS instability
in graphene transistor structures.

To date, research efforts focusing on the DS instabil-
ity in graphene structures are mostly limited to theoretical
studies [36–39]. Equations describing the DS instability in
graphene have been derived using the hydrodynamic model
within the linear response theory [36,37]. Recently, the effect
of finite viscosity of the electron fluid in graphene on the DS
instability was explored in the numerical model [38] as well
as the properties of the final stationary state formed at the
instability endpoint [39].

In this paper, we present a comprehensive theory of the DS
instability in graphene transistors, describing evolution of the
instability from the very beginning (the instability threshold)
till the instability endpoint, when the radiating stationary state
is developed. First, we examine an analytical description of
the DS instability at arbitrary allowed values of the electron
drift velocity. Our approach is based on the hydrodynamic
model of the electron fluid in graphene (Sec. II). We use
the derived nonlinear hydrodynamic equations together with
the full system of Maxwell’s equations in our original mul-
tiphysics simulation platform to numerically calculate and
analyze various aspects of the DS instability in graphene tran-
sistors. This includes a numerical analysis of the conditions
necessary for an onset of the DS instability, properties of the
final stationary state (the instability endpoint), as well as anal-
ysis of the EM radiation emitted by the graphene transistor in
the DS instability regime (Sec. III). Discussion of the results
and concluding remarks are presented in Sec. IV.

II. HYDRODYNAMIC DESCRIPTION OF THE 2D
ELECTRON SYSTEM IN GRAPHENE

In this section we derive the hydrodynamic equations de-
scribing the 2D electron system in graphene and apply these
equations for analysis of the DS instability.

A. Hydrodynamic equations

Hydrodynamic theory of 2D electron transport in graphene
was developed in a number of publications [36,37,40–43].
Here, for the sake of completeness, we briefly outline the main
steps used to derive these equations and analyze the results.

In the quasiclassical limit, kinetic behavior of the 2D
electron system in graphene is described by the electron dis-
tribution function fα (r, p, t ) to be found from the Boltzmann
equation

∂ fα (r, p, t )

∂t
+ vα · ∂ fα (r, p, t )

∂r

− eE(r, t ) · ∂ fα (r, p, t )

∂ p
= St fα (r, p, t ). (1)

Here, vα = ∂εα (p)
∂ p is the electron velocity, εα (p) is the electron

dispersion law with index α referring to the band, valley,
and spin quantum numbers collectively, E(r, t ) is the net
electric field applied to the electron with charge −e, and
St fα (r, p, t ) is the collision integral accounting for electron-
electron scattering as well as electron scattering on phonons
and impurities. The hydrodynamic description of electron
dynamics becomes possible if the time of electron-electron
collisions is much smaller than any other characteristic time
in the electron system, such as electron scattering time on
phonons and impurities, or inverse frequency of any external
field, or electron travel time between the systems boundaries.
In this case, fast interelectron collisions establish the local
Fermi distribution function fα0(r, p, t ) characterized macro-
scopically by the local values of the chemical potential μ(r, t ),
electron temperature T (r, t ), and since electron-electron col-
lisions do not change the total momentum of the interacting
electrons, by the local drift velocity v(r, t ). In the stationary
frame of reference, the function fα0(r, p, t ) is represented by
the drifting Fermi distribution function [44]

fα0(r, p, t ) = 1

1 + e
εα (p)−p·v(r,t )−μ(r,t )

kBT (r,t )

. (2)

This function should be used in Eq. (1) to find macroscopic
functions v(r, t ), μ(r, t ), and T (r, t ).

In the following, we assume that relatively small currents
are driven through the graphene layer so that the released
Joule heat is efficiently absorbed in the surrounding medium
(the substrate) maintaining T (r, t ) = T = const where T is
the lattice temperature [45]. We consider doped graphene lay-
ers in the degenerate limit, μ/T � 1, so that transport occurs
in the conduction band only. We also neglect intervalley and
spin scattering and omit index α in the following formulas.

Electron dispersion law in the graphene conduction band is
ε(p) = vF p where vF = 1.5 × 106 ms−1 and p =

√
p2

x + p2
y is

the magnitude of the electron momentum. Using this disper-
sion relation and Eq. (2) we can obtain an expression for the
local electron density n(r, t ) in the degenerate limit

n(r, t ) = g

(2π h̄)2

∫
f0(r, p, t ) d p

= μ2(r, t )

π h̄2v2
F

(
1 − v2(r,t )

v2
F

)3/2 . (3)
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Here, g = 4 is the spin and valley degeneracy factor of the
2D electrons in graphene and μ(r, t ) is the local value of the
chemical potential (the Fermi energy). This equation estab-
lishes the relationship between the local values of the electron
density n(r, t ) and the Fermi energy μ(r, t ) in the drifting
degenerate system of massless Dirac fermions in the hydrody-
namic approximation. In the frame of reference moving with
the velocity v(r, t ), the electron fluid is stationary, and the
same electron density can be written as

n(r, t ) = E2
F (r, t )

π h̄2v2
F

, (4)

where EF(r, t ) is the local value of the Fermi energy in
the stationary electron fluid. Comparing Eqs. (3) and (4)
we obtain

μ = EF

(
1 − v2

v2
F

)3/4

. (5)

Equation (5) determines dependence of the local Fermi energy
μ on the local drift velocity v in the drifting degenerate system
of the massless Dirac electrons. At arbitrary temperatures, this
relationship was derived in Ref. [41].

In the hydrodynamic model, the average momentum 〈p〉
and velocity 〈v〉 per one electron can be found as

〈p〉 = 1

n(r, t )

g

(2π h̄)2

∫
p f0(r, p, t ) d p

〈v〉 = 1

n(r, t )

g

(2π h̄)2

∫
∂ε(p)

∂ p
f0(r, p, t ) d p. (6)

After some tedious but straightforward evaluation of the inte-
grals in Eq. (6), with f0(r, p, t ) defined in Eq. (2), we obtain
〈v〉 = v(r, t ) as expected and

〈p〉 = μ(r, t )

v2
F

(
1 − v2(r,t )

v2
F

) 〈v〉 = EF(r, t )

v2
F

(
1 − v2(r,t )

v2
F

)1/4 〈v〉. (7)

The last equation suggests that the hydrodynamic effective
electron mass mH(r, t ) can be introduced as

mH(r, t ) = EF(r, t )

v2
F

(
1 − v2(r,t )

v2
F

)1/4 . (8)

The concept of the hydrodynamic effective mass in the con-
text of hydrodynamic description of the electron transport
in graphene at arbitrary values of the drift velocity v was
introduced in Ref. [37]. Our expression for mH(r, t ) in Eq. (8)
is different from that derived in Ref. [37]. The reason of
discrepancy lies in different assumptions made in both works.
In Ref. [37], the authors assumed that the local value of
the chemical potential μ(r, t ) in Eq. (2) is the same in the
laboratory frame of reference and in the frame of reference
moving with the drift velocity v(r, t ). This assumption leads
to the physically controversial result that the local electron
density n(r, t ) depends on the frame of reference.

The hydrodynamic equations (equation of continuity and
the Euler equation) can be obtained as the first two moments
of the Boltzmann equation (1) with the electron distribution
function defined in Eq. (2) [36,37,40–43]. Integrating Eq. (1)
in the momentum space and taking into account conservation

of the total number of electrons in the collisions included into
St f (r, p, t ), we obtain equation of continuity

∂n(r, t )

∂t
+ ∂

∂r
· [n(r, t )v(r, t )] = 0. (9)

Multiplication of Eq. (1) by the momentum p with subse-
quent integration in the momentum space yields the following
equation:

∂

∂t
[n(r, t )〈pi(r, t )〉] + ∂�i j (r, t )

∂r j
+ eEi(r, t )n(r, t )

= Ai(r, t ), i = x, y, (10)

where

�i j (r, t ) = g

(2π h̄)2

∫
pi

∂ε(p)

∂ p j
f0(r, p, t ) d p (11)

and

Ai(r, t ) = g

(2π h̄)2

∫
piSte-i,ph f0(r, p, t ) d p. (12)

Collision integral Ste-i,ph f0(r, p, t ) in Eq. (12) includes elec-
tron scattering on impurities and phonons only because the
total electron momentum is conserved in the electron-electron
collisions.

In the following, we assume that the graphene layer is posi-
tioned in the plane z = 0 and v, E(r, t )||x̂ so that all functions
in the hydrodynamic equations depend on x coordinates only.
In this approximation, integration in Eq. (11) yields

�xx(x, t ) =
(
1 − 2v2(x,t )

v2
F

)
E3

F (x, t )

3π h̄2v2
F

(
1 − v2(x,t )

v2
F

)1/4 . (13)

Substituting Eqs. (3), (7), and (13) into Eq. (10) we obtain the
Euler equation

√
π h̄

∂

∂t

[
βn3/2

(1 − β2)1/4

]

+
√

π h̄vF

3

∂

∂x

[
(1 + 2β2)n3/2

(1 − β2)1/4

]
+ eExn = Ax, (14)

where β(x, t ) = v(x, t )/vF is dimensionless local drift veloc-
ity. The last equation without the collision term agrees with
the Euler equation for an ideal liquid of Dirac fermions de-
rived in Ref. [43]. In the limit β � 1, Eq. (14) reduces to the
linear version of the Euler equation in Ref. [42].

To evaluate the collision term in the right-hand side of
Eq. (14), we have restricted ourselves to a simple case of
elastic electron scattering on Coulomb impurities of charge
Q randomly distributed in the 2D plane with average density
ni. In this case, collision integral Ste-i f0(r, p, t ) is evaluated
as [40]

Ste-i f0(r, p, t ) = − f0(r, p, t )

τp
. (15)

Here, τp is the transport momentum relaxation time of elec-
trons with momentum p [27]:

τp = h̄ε(p)

u2
0

, (16)
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where u2
0 = ni(

eQ
4εε0

)2 and ε is the dielectric constant of the
surrounding medium. Equations (15) and (16) should be used
in Eq. (12) to find the collision term Ax(x, t ). Evaluating the
integral in Eq. (12) and using Eq. (3) we obtain

Ax(x, t ) = −
√

π h̄
√

n0β(x, t )n(x, t )

τ
, (17)

where n0 is an equilibrium electron density in the 2D graphene
system and τ = h̄EF/u2

0 is the transport momentum relaxation
time at the Fermi level EF in equilibrium. In the particular case
of a uniform electron system in the stationary state v(x, t ) =
v0, n(x, t ) = n0, Ex(x, t ) = E0, Eq. (14) with the collision
term given by Eq. (17) reduces to the familiar Drude-like
expression

v0 = −eτv2
F

EF
E0, (18)

relating constant drift velocity v0 and applied constant electric
field E0 [27]. The total electric field in Eq. (14) can be split
into two terms Ex(x, t ) = E0 + E ind

x (x, t ), where E ind
x (x, t ) is

the electric field induced by the fluctuations of the electron
density. After some algebra, Eqs. (2), (17), and (18) yield

2 − β2

2(1 − β2)

∂v

∂t
+ v2

F(1 − β2)

2n

∂n

∂x
+ β2

2(1 − β2)
v
∂v

∂x

+ vF(1 − β2)1/4

√
π h̄

√
n

eE ind
x + (v − v0)(1 − β2)1/4

τ

√
n0

n
= 0.

(19)

The Euler equation (19) differs from the similar equation
derived in Ref. [37] in the collisionless limit by the effective
hydrodynamic mass in the field term as discussed earlier in
this section. Hydrodynamic equations (9) and (19) will be
used in our numerical studies of the plasma oscillations in the
driven 2D electron gas in graphene in Sec. III.

B. DS Instability in the graphene transistor

Plasma waves confined in the current-biased 2D transis-
tor channel are subject to the DS instability if asymmetric
boundary conditions are imposed at the opposite ends of the
plasmonic cavity formed in the channel [11]. To find condi-
tions necessary for development of the DS instability in the
graphene layers, we first obtain the spectra of the plasma
waves in the presence of the steady electron drift with velocity
v0. Following the standard procedure [36,37] we linearize
hydrodynamic equations (9) and (19) with respect to the small
fluctuations of the electron density δn and drift velocity δv:

n(x, t ) = n0 + δneiqx−iωt , v(x, t ) = v0 + δveiqx−iωt . (20)

Self-consistent electric field in the Euler equation (19) is
determined as Ex = − ∂δφ

∂x where δφ is the electric potential
induced by the charge perturbation −eδn. In the quasistatic
limit of the gated 2D electron channel, the values of δφ and
δn are related as [11]:

δφqω = − ed

εε0
δnqω, (21)

where d is the distance between the graphene layer and the
gate. This local approximation is valid for the long wavelength
fluctuations of the electron density when qd � 1. Using

Eqs. (20) and (21) and neglecting the collision term in the
Euler equation justified at ωτ � 1, we obtain the system of
linear equations for the fluctuations of the electric potential
δφqω and the current density δ jqω = −e(n0δvqω + v0δnqω):

qδ jqω − εε0

d
ωδφqω = 0, (22)

[γ (ω − qv0) + qv0](ω − qv0)δ jqω

− εε0

d

[
v2

F

2

(
1 − β2

0

) + e2n0v
2
Fd

εε0EF

(
1 − β2

0

)1/4
]
δφqω = 0,

(23)

where γ = 2−β2
0

2(1−β2
0 )

and β0 = v0/vF. The system of Eqs. (22)

and (23) has nontrivial solution if ω = v(±)
p q, where

v(±)
p =

(
1 − 1

2γ

)
v0 ± 1

γ

√
v2

F

2
+ γ e2n0v

2
F(1 − β2

0 )1/4d

εε0EF
.

(24)

Here, v(±)
p are velocities of the plasma waves traveling in the

direction of drift (+) and in the opposite direction (−). At
small velocities, v0 � vF, Eq. (24) reduces to [37]

v(±)
p = v0

2
± vp, (25)

where

vp =
√

v2
F

2
+ e2n0v

2
Fd

εε0EF
(26)

is the velocity of the plasma waves in the 2D graphene layer
in the absence of drift [36,37].

Dependence of the plasma velocities v(±)
p on the drift ve-

locity v0 at arbitrary 0 � v0 � vF is shown in Fig. 1(a). It
follows from Eq. (24) that v(±)

p → vF when v0 → vF and does
not depend on the direction of propagation of the plasma
waves at v0 = 0 as opposed to the result obtained in Ref. [37].
Qualitatively, this result is expected because vF is an ultimate
theoretical value of the drift velocity in the system of massless
Dirac fermions, and the limit v0 → vF is equivalent to the
limit v0 → ∞ in the system of electrons with finite effective
mass where v(±)

p → v0 when v0 → ∞.
The DS instability can be obtained if Eqs. (22) and (23) are

complemented by the Dyakonov-Shur boundary conditions at
the opposite ends of the plasmonic cavity of length L

δφqω(x = 0) = 0, δ jqω(x = L) = 0 (27)

corresponding to the zero gate-to-channel impedance at one
end of the cavity (x = 0) and the infinite gate-to-channel
impedance at the opposite end (x = L) [11]. Solving Eqs. (22)
and (23) with boundary conditions (27), we find the complex
plasma frequencies ω = ω′ + iω′′

ω′ = v(+)
p v(−)

p

v
(−)
p − v

(+)
p

π

L

{
2n, v(+)

p

/
v(−)

p > 0

2n − 1, v(+)
p

/
v(−)

p < 0
n = 1, 2, . . .

(28)

ω′′ = 1

L

v(+)
p v(−)

p

v
(−)
p − v

(+)
p

ln

∣∣∣∣v
(+)
p

v
(−)
p

∣∣∣∣. (29)
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FIG. 1. (a) The wave velocities of the plasmons traveling in the
direction of the dc electron drift (v(+)

p ) and in the opposite direction
(v(−)

p ) as a function of the drift velocity v0. (b) The plasma wave
increment ω′′ as a function of the drift velocity v0.

The instability arises when ω′′ > 0. In Fig. 1(b) we plotted
ω′′ as a function of v0 demonstrating that the instability can
occur in a broad interval of drift velocities. In the presence
of collisions, the onset of the instability occurs when ω′′ >

1/2τ where τ is the electron momentum relaxation time [11].
In the next section we find a rigorous numerical solution of
the nonlinear hydrodynamic equations (9) and (19) together
with the full system of Maxwells equations replacing Eq. (21),
and analyze the final stationary state of the current driven 2D
electron fluid in graphene in the DS instability regime.

III. NUMERICAL ANALYSIS OF THE DS INSTABILITY
IN THE 2D GRAPHENE LAYER

Temporal evolution of the DS instability and potential final
stationary state in the 2D electron system in graphene can
be found from the numerical solution of the nonlinear hy-
drodynamic equations (9) and (19) combined with Maxwell’s
equations for the EM field generated by the charge density
fluctuations in the 2D electron fluid. This system of equations

FIG. 2. Schematic of the graphene transistor structure used in the
numerical simulations of the DS instability.

should be solved self-consistently taking into account the
boundary conditions (27). So far, a self-consistent numerical
solution of the hydrodynamic equations in the DS instability
regime was mostly considered for semiconductor FETs with
a 2D electron channel in the quasistatic limit [46–48]. This
approach does not allow direct evaluation and analysis of the
THz EM radiation expected in the final stationary state of
the 2D system and regarded as the most important outcome of
the DS instability. The numerical solution of the DS instability
problem with the full system of the Maxwell equations instead
of the static Poisson equation was developed for the ungated
2D electron gas in semiconductor heterostructures in Ref. [49]
and for the III-V semiconductor-based HEMT in Ref. [50].
Very recently, the numerical solution of the DS instability
problem in the graphene-based transistor was developed in
Ref. [39] using the quasistatic model for the EM part of the
problem. The authors analyzed the final stationary state of the
2D electron system and estimated the maximum total THz EM
power generated in this state.

Below, we present the numerical solution of the DS insta-
bility problem in the graphene transistor using the full system
of Maxwell’s equations for the description of the generated
EM field. We analyze the final stationary state of the 2D
electron fluid in the transistor channel as well as the spectral
content and spatial distribution of the accompanying THz EM
radiation.

A. Numerical model

In Fig. 2, we show the schematic of the graphene-based
transistor structure used in our numerical simulation. It con-
sists of the graphene layer of length L placed between two
dielectric slabs with relative permittivity ε, representing the
substrate of thickness l and the barrier layer of thickness d
separating the graphene channel with the 2D electron gas and
the metal gate. The source and drain metal contacts are used
to provide constant bias current characterized by the particle
current density j0 = n0v0 where n0 is the equilibrium 2D elec-
tron density in the graphene channel and v0 is the drift velocity
determined by the applied constant source-drain voltage. We
assume that our system is uniform in the direction perpendic-
ular to the current in the 2D plane so that the 2D electron fluid
in the graphene layer is described by the one-dimensional hy-
drodynamic equations (9) and (19). These nonlinear equations
written in terms of the electron density n(x, t ) and the particle
current density j(x, t ) = n(x, t )v(x, t ), subject to the bound-
ary conditions n(x = 0, t ) = n0 and j(x = L, t ) = j0, should
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FIG. 3. Temporal evolution of the plasmonic current density in the graphene transistor channel above [(a) and (c)] and below [(b) and (d)]
the instability threshold v0 � L

τ
. The channel length L = 1μm in all plots.

be solved numerically together with Maxwell’s equations

∇ × E = −μ0
∂H
∂t

,

∇ × H = −e( j − j0)δ(z)x̂ + εε0
∂E
∂t

, (30)

where E = Exx̂ + Ezẑ and H = Hyŷ are electric and magnetic
components of the EM field induced by the fluctuations of
the electric current in the channel −e( j − j0). The numerical
simulation was performed using the original finite-difference-
time-domain (FDTD) multiphysics simulation platform be-
cause commercial tools do not allow simultaneous simulation
of both hydrodynamic and Maxwell’s equations in the time
domain. The platform allows both solvers to run simultane-
ously on MATLAB and provides a self-consistent solution of
the equations discretized in the 2D grid space [51]. The dis-
cretization procedure and the FDTD method are described in
more detail in Ref. [50]. In the numerical 2D grid scheme used
in this simulation, the graphene channel was represented as an
infinitely thin sheet lying at the boundary between two grid
cells. This can be done with special choice of the grid scheme
which overlays the current density j and electric field Ex

between two separate solvers for the hydrodynamic and elec-
trodynamic equations. The numerical algorithm also includes
additional boundary conditions ∂ j(x=0,t )

∂x = 0 and ∂n(x=L,t )
∂x = 0

at the boundaries between the 2D electron channel and
the source/drain contacts. These conditions follow from the
hydrodynamic equations and provide necessary matching be-
tween the graphene channel and the metal contacts.

In our numerical simulations of the device shown in Fig. 2
we take the length of the graphene channel L = 1μm, the
gate-to-channel distance d = 20 nm, the substrate thickness
l = 400 nm, relative permittivity of the dielectric slabs ε =

3.8, and the equilibrium 2D electron density n0 = 4.2 ×
1016 m−2. All metal contacts were assigned an infinite con-
ductivity to save computational time.

B. Results

In the following sections we analyze the results of the
numerical simulations of the DS instability in the graphene
transistor obtained within our simulation platform.

1. Instability threshold

To initiate the transistor structure response, we introduced
the fluctuation of the particle current density at the initial
moment of time (the kick). The fluctuations with a magnitude
equal to 8% of the equilibrium particle current density j0 were
placed at several random cells of the numerical grid in the
graphene channel. We note that the fluctuation magnitude and
position do not affect the final stationary state of the system
but may affect the time it takes to set up the collective plasma
oscillation in the channel at the very beginning of the process.

In Fig. 3 we show temporal evolution of the plasmonic
current after the initial excitation. The current was recorded
in the midpoint of the graphene channel at several different
values of the drift velocity v0 and relaxation time τ . The plots
in Figs. 3(a)–3(d) demonstrate that after some transient time
the collective plasma oscillations in the 2D electron channel
either exponentially decay as shown in Figs. 3(b) and 3(d)
or develop the instability as shown on Figs. 3(a) and 3(c).
The instability develops if ω′′ > 1/2τ where ω′′ is determined
by Eq. (29). At v0 � vF, Eqs. (25) and (29) yield the insta-
bility threshold vth

0 > L/τ . This conclusion is quantitatively
confirmed in our numerical simulations shown in Fig. 3. In
Figs. 3(a) and 3(b) the value of relaxation time τ = 5 ps
was used, with a threshold drift velocity vth

0 = 2 × 105 ms−1.
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FIG. 4. (a)–(c) The plasmonic current density in the graphene transistor channel (left) and the current spectral content (right) in the final
stationary state at different electron densities: (a) n0 = 4 × 1016 m−2; (b) n0 = 2 × 1016 m−2; (c) n0 = 5 × 1016 m−2. In all plots v0 = 4 ×
105 ms−1, τ = 5 ps. (d) The fundamental frequency of the plasmonic current oscillations as a function of electron density n0 found analytically
from Eq. (31) (solid blue line) and numerically (dotted orange line).

In Fig. 3(a), we have v0 = 3 × 105 ms−1 so that v0 > vth
0 ,

whereas in Fig. 3(b), v0 = 1.8 × 105 ms−1 and v0 < vth
0 . The

instability develops in Fig. 3(a) and plasma oscillations expo-
nentially decay in Fig. 3(b). Similar behavior is observed in
Figs. 3(c) and 3(d) where the drift velocity is kept constant
at v0 = 4 × 105 ms−1 but simulations are performed at two
different relaxation times: τ = 3 ps in Fig. 3(c) and τ = 1.5 ps
in Fig. 3(d). The threshold value of the relaxation time is
τ th = L/v0 = 2.5 ps. The instability develops at τ > τ th in
Fig. 3(c), and oscillations decay at τ < τ th in Fig. 3(d).

2. Final stationary state (instability endpoint)

The central question of the DS instability problem is the
character of the final state after the electron system is stabi-
lized in the dynamic equilibrium when the energy supplied
by the external dc circuit is balanced by the losses due to
Joule heating and EM radiation. In semiconductor structures
this problem was considered in Refs. [49,50]. In graphene, the
problem of the instability endpoint was first addressed in the
very recent paper by Mendl et al. [39]. In all these studies it
was concluded that the instability endpoint represents some
coherent (nonchaotic) nonlinear oscillator with electron den-
sity and plasmonic current periodically changing in time. We

present the results of our studies of the final stationary state in
the DS instability regime in Fig. 4. In Figs. 4(a)–4(c), we show
the temporal evolution of the plasmonic current after an initial
kick described earlier in the text at three different values of the
equilibrium electron density n0. These plots demonstrate that
after an initial rise due to the DS instability, the signal stabi-
lizes in some stationary periodic pattern. The spectral content
of this pattern in the time domain is presented in the spec-
trograms placed next to each signal plot in Figs. 4(a)–4(c).
These spectrograms demonstrate stable spectra in the final
stationary state of the electron system in the graphene channel.
The spectrum consists of a series of peaks at integer multi-
ples of some fundamental frequency f0. The peak amplitude
gradually decreases for higher harmonics. This type of spec-
trum describes the anharmonic plasmonic current oscillations:
j(t + T ) = j(t ) with period T = 1/ f0 and corresponds to the
coherent nonlinear oscillator in agreement with previous stud-
ies [39,49,50]. The fundamental frequency f0 depends on n0

and with high degree of accuracy coincides with the frequency
of the fundamental mode found in the linear analysis of the
DS instability and given by Eq. (28). In Fig. 4(d), we plot the
value of f0 found in our numerical simulations at different
electron densities n0 and the analytical results from Eq. (28)
at n = 1 confirming this conclusion. Numerical simulations
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FIG. 5. Spatial distribution of the components of the time-
averaged Poynting vector (a) 〈Sx〉 and (b) 〈Sz〉 of the THz EM
radiation generated by the graphene transistor structure in the DS
instability regime at n0 = 4.2 × 1016 m−2, v0 = 4 × 105 ms−1, and
τ = 5 ps.

performed at different drift velocities v0 show that the value of
f0 does not depend on v0 as long as v0 � vF and are described
by the simple formula

f0 = vp

4L
, (31)

corresponding to the quarter-wavelength standing plasmonic
wave in the linear response theory considered in Sec. II B.

3. Generated electromagnetic fields

The solution of Maxwell’s equations, found using the
electrodynamic FTDT solver in our multiphysics simulation
platform, provides the values of the electric E and magnetic
H components of the EM field radiated by the graphene tran-
sistor channel at the instability endpoint. These components
were used to find the spatial distribution pattern of the time-
averaged components of the Poynting vector S in the area

FIG. 6. The total radiated power at the instability endpoint as
a function of the electron drift velocity v0 at several values of the
equilibrium electron density n0. Solid (dashed) lines correspond to
the momentum relaxation time τ = 5 ps (τ = 2.5 ps).

surrounding the graphene channel,

〈S〉 = 1

T

∫ t+T

t
E(t ) × H (t ) dt . (32)

The patterns for the x and z components of the Poynting vector
are shown in Figs. 5(a) and 5(b), respectively. It follows from
these patterns that while the metal gate effectively blocks the
EM radiation generated mostly in the gap between the gate
and the graphene layer, the infinitely thin graphene layer is
practically transparent. Also, asymmetric boundaries lead to
an uneven EM field distribution near the source and drain
contacts. These features determine the resulting radiation pat-
tern. The total EM power P emitted by the graphene transistor
can be calculated by integrating the normal component of the
Poynting vector over a continuous boundary encircling the de-
vice. In Fig. 6, we plotted the total power P as a function of the
drift velocity v0 at several different values of the equilibrium
electron density n0 and electron momentum relaxation time τ .
The available range of v0 is limited by the electron saturation
velocity in graphene: v0 � 0.5vF [52]. As expected, the power
P increases with the drift velocity because of the increased
instability increment, see Fig. 1(b). The larger instability
increment results in a larger amplitude of the electron oscilla-
tions in the final stationary state. The radiated power strongly
depends on the relaxation time τ , increasing at smaller scatter-
ing rates. It happens due to the shift of the instability threshold
to smaller v0, and also because of the decreased Joule heating
in the final stationary state leading to redistribution of the
power supplied by the external circuit towards the radiation.
The power P only slightly increases with the equilibrium
electron density n0 due to increased oscillator strength in the
final stationary state. In our one-dimensional model, the calcu-
lations yield P = 4.6 nW/μm−1 for the values of parameters
used in Fig. 5. If the finite width W of the transistor structure
is taken into account, the total power can roughly be estimated
as P = 460 nW at W = 100μm. This number can only be
considered as a lower bound of the emitted power because our
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one-dimensional channel model and 2D Maxwell’s equations
do not give full description of the three-dimensional radiation
pattern. These power estimates are comparable with similar
estimates for the III-V semiconductor-based transistors [50].
The power radiated at frequency ω can be evaluated as

P = 1

2

∮
C

Re {E(ω) × H (ω)} · n dl, (33)

where E(ω) and H (ω) are the Fourier transforms of the
electric and magnetic field vectors and C is an enclosed
boundary with normal vector n. For the device parameters
used in Fig. 5, a fundamental frequency of f0 = 1.2 THz
was calculated. The EM power radiated at this frequency is
P = 3.1 nW/μm−1, which means that only 67% of the total
power is radiated at the fundamental frequency.

IV. DISCUSSION AND CONCLUDING REMARKS

The growth of plasma waves due to the DS instability is
opposed by various dissipative processes damping the plasma
waves such as random electron scattering on phonons and
impurities in the transistor channel [11], plasmon damping
in the metal contacts at the channel boundaries [53], and
finite viscosity of the electron fluid in graphene [11]. In the
state-of-the-art graphene structures the electron mean-free
path vFτ is of the order of 10μm at low temperatures. In
plasmonic cavities of length L ≈ 1μm, the instability incre-
ment ω′′ = v0

2L will exceed the plasma wave decrement due
to random electron scattering 1

2τ
at the drift velocity v0 �

0.1vF. These values of the drift velocity are accessible in the
experiment [52]. As shown in Ref. [53], the plasma wave
decrement due to plasmon damping on the metal leads has
the same order of magnitude as the decrement due to random
electron scattering and should not pose additional problems
for experimental realization of the DS instability.

In view of the above, the plasma wave damping due to
finite viscosity of the electron fluid in graphene emerges as
the only significant dissipative process suppressing the DS
instability. In the hydrodynamic regime, finite viscosity of
the electron fluid can be included into the hydrodynamic
equations by replacing the Euler equation with the Navier-
Stokes equation, accounting for the dissipative processes in
the fluid due to internal friction [39,41,43,46–48]. Rigorous
numerical solution of the nonlinear hydrodynamic equations
for viscous electron fluid together with Maxwell’s equations
is beyond the scope of this paper and will be considered else-
where [54]. However, some qualitative estimates of the effect
of the finite viscosity on the DS instability can be made based
on the linear response theory. In the hydrodynamic regime,
the plasma wave decrement γv due to finite viscosity is de-
termined as γv ∼ νk2, where ν ∼ v2

Fτee is the electron fluid
viscosity, k ∼ n

L is the wave vector of the nth plasma mode in
the cavity of length L, and τee is the time of electron-electron
scattering [11,41]. The plasma damping due to viscosity in-
creases for the higher-order modes with larger wave vector
k. It also increases with electron-electron scattering time τee.
The upper bound of the viscosity contribution to the damping
of the plasma mode of frequency ωn can be determined from
the condition ωnτee ∼ 1. This condition is justified because at

larger values of τee, the plasmonic system experiences a tran-
sition from the hydrodynamic regime to the ballistic regime
where viscosity correction to the plasmon damping disap-
pears [38,55]. For the fundamental plasma mode of frequency
ω1 ∼ vp

L , the upper bound of the damping due to viscosity is

γv ∼ v2
F

vpL , where plasmon velocity vp is defined in Eq. (26).

The fundamental mode remains unstable if ω′′ > γv . This
condition determines the threshold for the drift velocity v0 �
v2

F
vp

. For a gated graphene structure with n0 = 1 × 1016 m−2,
d = 100 nm, ε = 3.8, we obtain v0 � 0.15vF. This threshold
decreases further with increasing electron density n0.

The above estimates show that the dissipative plasmon
losses in the graphene transistor channel do not present a sig-
nificant obstacle for observing the DS instability. Yet another
nondissipative process may strongly impact the experimental
realization of the DS instability. The instability increment
ω′′ critically depends on the asymmetry of the boundaries
at the opposite ends of the plasmonic cavity formed in the
transistor channel [11,50,56,57]. In this paper, the instability
increment ω′′ was derived under the assumption of the ideal
asymmetric boundary conditions in Eq. (27), which corre-
spond to the zero impedance between the source and gate,
Zgs = 0, and infinite impedance between the drain and gate,
Zgd = ∞. These boundary conditions were first introduced in
the pioneering paper by Dyakonov and Shur [11]. However,
in any real experimental system these capacitive impedances
always have some finite values determined by the system
geometry and material parameters. The effect of finite Zgs and
Zgd on the DS instability in the semiconductor structures was
considered in several papers [50,56,57]. It was shown that
any deviations of Zgs and Zgd from the ideal values change
the resonant plasma frequencies in the cavity [50], and most
importantly, decrease the instability increment [50,56]. In the
limit Zgs = Zgd, the instability increment turns to zero. The
lack of sufficient asymmetry of the boundaries may suppress
the DS instability, so special care should be taken to satisfy
condition Zgs � Zgd in the experimental studies.

In summary, we presented comprehensive, analytical, and
numerical studies of the DS instability in graphene transis-
tors in the hydrodynamic regime. We analyzed conditions
necessary for the onset of the DS instability, the properties
of the final stationary state (the instability endpoint) of the
electron fluid in the graphene transistor channel, as well as
THz EM radiation emitted in this state. The developed multi-
physics simulation platform allowed us to numerically solve
the nonlinear hydrodynamic equations together with the elec-
trodynamics equations providing the powerful and versatile
tool for future studies of similar systems. We demonstrated
the feasibility of the DS instability in the current state-of-
the-art graphene transistors, which can be used for designing
an on-chip tunable THz plasmonic generator with potential
applications ranging from the short distance communications
in the wireless on-chip networks to the novel imaging and
sensing techniques.

Note added in proof. Recently, we became aware of Ref.
[58] where the local drifting Fermi distribution function
for massless Dirac fermions in graphene was analyzed in
both stationary and moving (“proper”) frames of reference.
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Using the quasi-Lorentz transformation of the electron en-
ergy and momentum between these two frames of reference,
the authors derived an expression for the dependence of
the chemical potential on the drift velocity coinciding with
our Eq. (5).
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