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Abstract—In this paper, the capability of ultra-wideband
(UWB) sensor arrays for tomographic imaging of electrically large
objects in 2-D and 3-D environments is presented. One of the main
concerns when imaging extended real objects is the capability of
the system to correctly reconstruct the object cross-section electric
properties. An imaging method using a UWB multifrequency bi-
focusing (UWB-MFBF) operator with good tomographic imaging
capabilities is presented, and numerical simulations are conducted
to obtain the basic geometry and sampling parameters for a
good-quality image reconstruction for geometrical and electrical
parameters. Canonical-shape experimental reconstructions are
performed to validate the established criteria.

Index Terms—Antenna arrays, frequency domain, microwave
imaging, near field, permittivity, tomography, ultra wideband
(UWB).

I. INTRODUCTION

THE CAPABILITY of microwave signals to penetrate and
sense light opaque materials with reasonable spatial reso-

lution makes them attractive for different industrial, medical,
and security applications [1]–[5]. Wideband signals, such as
those produced with ultra-wideband (UWB) systems [6], [7]
and, in particular, the recent 3.1- to 10.6-GHz band, offer new
possibilities to increase spatial resolution and material electrical
parameter measurement accuracy.

Existing short-range imaging systems basically rely on two
main techniques—the ones that are aimed at the internal inspec-
tion of the objects, normally based on tomographic approaches
[8]–[13], and those that are based on the radar techniques
[14]–[17], which are oriented at the characterization of spe-
cific scatters inside the interrogation zone. Although hybrid
approaches exist, in general, radar-based techniques tend to be
formulated in the time domain to use computationally efficient
back-projection algorithms and to give accurate object shape
and location results. Tomography-based techniques, on the
other hand, tend to be formulated in the frequency domain to
be based on nonlinear iterative inversion algorithms and to give
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accurate information on the dielectric-property profiles of the
objects for modest size-contrast products. When the interest is
the tomographic reconstruction of high-contrast electrically ex-
tended objects, the problem becomes highly nonlinear, and ex-
isting techniques suffer from a lack of accuracy (ill-conditioned
matrices) or from low computational efficiency (time-expensive
inversion or iterative methods); consequently, new approaches
need to be found. Most of the imaging methods (both monofre-
quency and multifrequency) are frequency sensitive [18] in the
sense that illuminating fields and their corresponding traces
tend to be highly frequency dependent and, therefore, resonance
modulated. On the other hand, a continuous frequency spectrum
or, equivalently, a temporal impulse will reduce the resonance
character of the reconstruction and, in some sense, the degree
of nonlinearity.

The method presented in this paper, which theoretically
completes and extends the previous work presented in [19],
consists of a UWB multifrequency bifocusing (UWB-MFBF)
imaging technique that synthetically focuses a UWB incident-
transmitted field and the corresponding scattered-received field
on every “pixel” of the reconstructed scenario. Using the
wide frequency-band character of the incident-wave frequency,
resonant-free reconstructions may be obtained. The establish-
ment of criteria in terms of the number of sensors and their
geometrical disposition will offer an interesting number of
possibilities and improvements in the field of electromagnetic
short-range object visualization.

In Section II, the analytical formulation is presented. In
Section III, the spatial and frequency sampling criteria are
established, and in Section IV, the quality of the reconstruction
algorithm for low- and high-contrast objects is discussed. Para-
metric simulations have been conducted to verify the results.

A first experimental validation in Section V has been finally
performed using two collinear arrays of UWB antennas, which
act as transmitters and receivers.

II. ANALYTICAL FORMULATION

The general idea for UWB short-range imaging consists
of distributing a certain number of microwave sensors (trans-
mitters and/or receivers) on a certain region surrounding, as
much as possible, the object under investigation. The goal is to
obtain the 2-D or 3-D spatial and electrical information of the
extended object, i.e., εm(�r ), relative to the original background
value of the interrogation area, i.e., εb(�r ). The object can be a
continuous distribution or a discrete set of independent objects
Sk with electrical permittivity εSk

(�r ).
Following the electromagnetic compensation principle [20],

the illumination of an object induces an equivalent electric
current distribution that is proportional to the electrical contrast
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Fig. 1. Interrogation geometry.

c(�r )=(εm(�r )−εb(�r ))/εb(�r ) that, in the illumination process,
may be seen as the source of the scattered field and, in the
inverse imaging process, as an approximate “trace” of the
original object.

As shown in Fig. 1, a set of NT transmitters Ti and a set of
NR receivers Rj are used to scan the interrogation area where
the reconstruction algorithm is applied. First, a measurement
matrix (information matrix) is obtained as follows. For every
transmitting element, the receiving array is scanned over each
receiving element, obtaining an NR measurement vector. Then,
the procedure is repeated for the NT transmitting elements,
obtaining an NT × NR matrix.

The reconstruction algorithm forms every image point of
the local electrical properties of the object by means of syn-
thesizing two focused groups of antennas (transmitters and
receivers). The antenna elements (transmitting and receiving
signals) are numerically weighted by a focusing operator to
be focused on a unique object point. This is achieved by
a mathematical treatment of the measurement matrix. This
numerical focusing operator [21] consists of taking the inverse
weights of the electrical field that is induced by an imaginary
object point that scans all the possible grid points of the space
under reconstruction. Applying this focusing operator to the
measurement matrix for all the points of the image space grid,
we are able to obtain a replica of the extended object. Since
there exist nonlinear phenomena, such as multiple or high-
contrast scattering and frequency dependence, the continuous
frequency superposition that is proposed in this paper will tend
to smooth out and reduce their effects.

To be more specific, in the 2-D case, for a particular wave-
number k corresponding to the frequency f , the scattered field
that is measured at a receiver positioned in rR(xr, yr) having
an imaginary pointlike scatter placed at rS(xs, ys) is given by

Es(xr, yr, f) = Ei(xs, ys, f) · Iobj · H(2)
0 (k|rr − rs|) (1)

where H2
0 is the Hankel function of the first order and the

second kind, Iobj(�r) ∝ fc(�r) Ei(�r) [9] is the equivalent current
induced on the object, and Ei is the focused incident field on
the pointlike scatter position. This incident field can be ex-
pressed as

Ei(xi, yi, f) =
Nt∑

n=1

Itn(xf , yf , f) · H(2)
0 (k|rtn − ri|) (2)

Itn(xf , yf , f) =
1

H
(2)
0 (k|rtn − rf |)

(3)

where Itn is the focusing operator for the transmitters.

Fig. 2. (a) Space and (b) spectral domain geometry.

Then, the reconstructed field Ef in each of the focusing
points of the grid is found as follows:

Ef (xf , yf , f) =
Nrt∑
n=1

Irn(xf , yf , f) · Es(xrn, yrn, f) (4)

Irn(xf , yf , f) =
1

H
(2)
0 (k|rrn − rf |)

(5)

where Irn is the focusing operator for the receivers.
Last, the entire process can be grouped using a matrix

formulation as follows:

Ef (xf , yf )=[It1 It2 It3 · · · ItNt
]

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Est1r1 Est1r2 · · · · · · Est1rNr

Est2r1

. . .
...

Est2r1

. . .
...

...
. . .

...
EstNt r1 · · · · · · · · · EstNt rNr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ir1

Ir2

Ir3

...

IrNr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

For the UWB case, when a certain set of frequencies are
combined, the total field can be obtained as a coherent
addition, i.e.,

Ef (xf , yf ) =
f2∑

f=f1

Ef (xf , yf , f). (7)

The extension to the 3-D geometry can be done using the 3-D
spherical operator e−jkr/r instead of the 2-D Hankel operator.

III. SPACE AND FREQUENCY SAMPLING CRITERIA

Our aim is to obtain accurate spatial information about the
electrically extended object in terms of its geometrical shape
and electrical parameter values using a network of antennas that
are located regularly or randomly throughout the interrogation
area. The knowledge of the number of elements that must form
the sensor network and its disposition on the reconstructing
scenario is crucial to obtain the desired results.

Based on the Fourier diffraction theorem [22], the imaging
problem can be stated as follows. The information obtained
from the scattered field Es produced by a particular frequency
f0 and orientation φ0 [Fig. 2(a)] may be translated into a
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Fig. 3. Imaging sensor network geometry.

circle of radius k0 = 2πf0
√

μbεb (semicircle TG for transmit-
ting geometry and semicircle RG for reflection geometry) of
the 2-D Fourier transform (FT) spectral domain (u, v) of the
object C(u, v) = FT{c(x, y)} [Fig. 2(b)]. The successive an-
gular and frequency scans will fill the spectral domain “knowl-
edge” on a specific manner, depending on the imaging system
design.

Under the low-contrast electrical property condition, i.e.,
c(�r) � 1, which is usually known as the Born condition, fre-
quency and geometrical scans are partially equivalent, and op-
timized combinations can be found to fulfil the spectral domain
C. Under the non-Born condition, however, those conditions
are not applicable, and new criteria need to be obtained.

To design the UWB imaging system, the spatial and fre-
quency requirements need to be considered, according to the
following points.

1) Spatial-Angular Sampling: From the electromagnetic
modal expansion of the fields scattered by an electric object
when illuminated by an incident field, it is known that to
obtain an image with a resolution of λfmax/2 (with λfmax being
the highest operating frequency inside the UWB interval), in
all directions, good encircling interrogation geometry with a
number Nφ of views is required. The minimum number of
views that are necessary to properly reconstruct the object is
equal to the number of coefficients of the cylindrical-mode
(or the spherical mode for 3-D geometry) expansion [20] of the
scattered field, i.e.,

Nφ ≥ 2kfmaxa = 2 · π · a/(λfmax/2) (8)

with a being the object-encircling radius, and kfmax =
2π/λfmax .

Thus, implying a maximum angular step, as shown in Fig. 3

Δφ = 2 · π/Nφ = λfmax/(2 · a). (9)

Fig. 4 shows the reconstruction results for a dielectric
cylinder with a diameter of 25 cm using encircling circular
geometry with 128 transceivers [sequentially acting as emitters
and receivers; Fig. 4(a)] and 16 transceivers [Fig. 4(b)]. When
angular sampling criteria are satisfied [Nφ > 2ka; Fig. 4(a)],
the reconstructed image is uniform over the cylinder, and the
contours are determined perfectly.

2) Frequency Sampling: To ensure an image that is free of
distortion and false aliases into the radial (Fig. 3) direction,

Fig. 4. Reconstructed image of a 25-cm diameter cylinder with
(a) 128 emitters and receivers and (b) 16 emitters and receivers.

Fig. 5. Object aliases versus the number of frequency samples.

the frequency sampling Δf must accomplish the following (for
Rmin = 2a):

Δf ≤ 1
Tt

=
c

2Rmin
=

c

4a
. (10)

Therefore, given a certain frequency bandwidth of
B = fmax − fmin, which is associated with a pulse of spatial
length lp, the number of frequency samples Nf to obtain an
image of the extended object without replicas inside the area of
interest must be

Nf ≥ fmax − fmin
c

2R

=
B
c

2R

=
2a

lp
. (11)

Fig. 5(a) has been obtained with fewer samples (Nf = 5)
than that given by (2) with R = 1 m. Distorted aliases appear
every 10 cm. Fig. 5(b), on the other hand, has been obtained
with an appropriate number of frequencies (Nf = 64); there-
fore, the replicas are out of range.

3) Measurement Geometry: Last, the measurement arrange-
ment needs to be considered. For reflection geometry
[Fig. 6(a)], only the contours of the cylinder in the direction that
is orthogonal to the array are well defined, and there is not much
information on the internal profile of the object. By increasing
the number of views, the whole contour would be determined.
On the other hand, for transmission geometry [Fig. 6(b)], the
edges tend to disappear, and the internal characteristics of the
object are reinforced.

When using circular geometry [Fig. 6(c)], where all antennas
are transmitters and receivers at the same time, a high-quality
image of the whole object is obtained. In accordance with the
aforementioned Fourier diffraction theorem [22], the observed
differences between the reconstructed images corresponding to
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Fig. 6. Reconstructed cylinder of radius 0.2 m and εd = 1.01. (a) Reflection geometry. (b) Transmission geometry. (c) Circular geometry.

Fig. 7. Three-dimensional reconstructed image for a UWB Mills crossed
linear array.

the previous three kinds of antenna geometry are related to
the way the spectral domain has been filled with the different
measurement arrangements.

For nonencircling geometry, such as the linear geometry
shown in Fig. 6(a) and (b), the resolution decreases in the
transversal axis due to the lack of information on the associated
area of the spectral domain. In this case, the transversal reso-
lution, instead of being close to λfmax/2, is Rλf max/Larray,
where Larray is the length of the antenna array, and R is the
distance from the object to the sensor antennas.

Last, when the interest is on 3-D geometry, appropriate
sensor geometry has to be considered. The Mills cross array
[23] is a good resolution array complexity tradeoff. Fig. 7 shows
the reconstructed image for a set of five spherical 6-cm diam-
eter objects inside 100 × 100 × 100 cm3 when sensed by two
100-cm-length linear arrays—a horizontal array of transmitters
and a vertical array of receivers.

IV. IMAGE RECONSTRUCTION QUALITY

In this section, the quality of the image for different values
of the electrical contrast for a UWB sensor network that ac-
complishes the previous sampling criteria is tested, and basic
guidelines for good image reconstruction quality are obtained.

1) Born Object Imaging: Under low-contrast Born objects,
frequency and spatial scanning are partially equivalent (giving

Fig. 8. Reconstructed cylinder with a diameter of 0.25 m, and εd = 1.01.
(a) At 10.6 GHz. (b) Using the whole UWB 3.1–10.6 GHz. (c) Off-centered
cylinder using the whole UWB frequency range.

almost equivalent information), and optimized combinations of
the previous equations can be found to fill the spectral domain
and to obtain the correct image of the object. Fig. 8(a) shows
how the monofrequency image obtains a good reconstruction of
the electrical contrast that is equivalent to the one obtained with
the whole UWB frequency range [Fig. 8(b)]. Fig. 8(c) shows the
equivalent results for an off-centered cylinder. In this low-
contrast case, a single frequency and a dense angular sampling
may be equivalent to a dense frequency sampling combined
with a reduced number of views.
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Fig. 9. Reconstructed cylinder with a diameter of 0.25 m, and εd = 100.
(a) At 10.6 GHz. (b) Using the whole UWB 3.1–10.6 GHz. (c) Off-the-center-
positioned cylinder using the whole UWB frequency range.

Fig. 10. Tumor detection in a medium with εm = 7 − 0.3j. Tumor radius is
2.5 mm, and εs = 50.

2) Non-Born Object Imaging: Under non-Born conditions,
UWB proves to succeed in obtaining high-quality images,
whereas it is not possible using a single frequency. Fig. 9
shows, for high contrasted objects, how the frequency scan [see
Fig. 9(b)] improves the quality of the monofrequency recon-
struction [see Fig. 9(b)]. Fig. 9(c) shows how the quality of the
reconstruction can be maintained for an off-centered cylinder.

Object Imaging in “Permeable” Media: One of the
quality parameters of an imaging system is its capability to
reconstruct objects that are immersed in real “permeable” back-

Fig. 11. Geometry of the location experimental setup.

Fig. 12. Experimental reconstruction of the two scatters using the UWB-
MFBF method.

grounds. As one of the cases of growing interest is cancer
detection, we present the imaging results for a simple model of
a breast tumor using the UWB-MFBF method. Fig. 10 shows
how the tumor can be properly reconstructed in spite of being
inside a fat lossy layer.

V. EXPERIMENTAL RESULTS

To perform some preliminary validation of the pre-
vious imaging results, experimental UWB measurements
(3.1–10.6 GHz) were done. Measurements were taken inside
an anechoic chamber to avoid excessive reflections from the
environment.

As a first canonical case, two cylindrical scatters with a
diameter of 6 cm (2λfmax) were placed inside a 96 × 140 cm
rectangular interrogation area formed by two robotized linear
scanning systems, as shown in Fig. 11. Two UWB ridge anten-
nas, respectively acting as a transmitter, and a receiver, were
connected to a 40-GHz Agilent vector network analyzer and
moved along the 96-cm scanning systems in steps of 3 cm,
forming a 33 × 33 element measurement matrix (for each
of the 33 positions of the transmitting antenna, 33 measure-
ments corresponding to the 33 receiving antenna positions were
recorded).

Fig. 12 presents the results for the two canonical 6-cm
diameter cylindrical objects using the UWB-MFBF technique,
showing that the cylinders are correctly placed with a λfmax/2
resolution along the y-axis but are poorly placed along the lon-
gitudinal z-axis due to the lack of the encircling characteristic
of the sensors.

For a more realistic situation, a cylinder with a diameter of
30 cm (10λfmax) filled with water was placed between the two
synthetic linear arrays that were described previously. Results
for the reconstruction (Fig. 13) show the correct placement
of the cylinder, a quite uniform reconstruction of the inside,
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Fig. 13. Experimental reconstruction of a cylinder of water and 0.3-m diame-
ter using the UWB-MFBF imaging method.

and good contour accuracy on the y-axis and poorer accuracy
in the x-axis, again, because not enough encircling geometry
was used.

VI. CONCLUSION

UWB characteristics give a set of unique possibilities in
terms of resolution and robustness for the tomographic vi-
sualization capabilities of arbitrary interrogation geometry.
The resolution can reach λ/2, at the highest operating fre-
quency, in all directions for circular or random geometry. For
3-D interrogation geometry, the crossed linear geometry can be
made appropriate when a reduction on the number of sensors is
necessary.

UWB short-range imaging is possible for Born and non-Born
objects under certain sampling criteria for frequency and spatial
scanning.

For low-contrast Born objects, optimization on the estab-
lished criteria can be applied, as frequency and geometrical data
are partially equivalent.

For high-contrast objects, simultaneous accomplishment of
the two sampling criteria (the frequency and the angle) gives
better reconstructed images due to the nonresonant characteris-
tic of the UWB illuminating field.
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