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Abstract—In the last few decades, the development of minia-
ture biological sensors able to detect and measure di↵erent
phenomena at the nanoscale has led to transformative disease
diagnosis and treatment techniques. Among others, biofunctional
Raman nanoparticles have been utilized in-vitro and in-vivo
for multiplexed diagnosis and detection of di↵erent biological
agents. However, existing solutions require the use of bulky lasers
to excite the nanoparticles and similarly bulky and expensive
spectrometers to measure the scattered Raman signals, which
limit the practicality and applications of this nano-biosensing
technique. In addition, due to the high path loss of the intra-
body environment, the received signals are usually very weak,
which hampers the accuracy of the measurements. In this
paper, the concept of cooperative Raman spectrum reconstruction
for real-time in vivo nano-biosensing is presented for the first
time. The fundamental idea is to replace the single excitation
and measurements points (i.e., the laser and the spectrometer,
respectively) by a network of interconnected nano-devices able
to simultaneously excite and measure nano-biosensing particles.
More specifically, in the proposed system a large number of
nanosensors jointly irradiate and distributively collect the Raman
response of bio-functional nanoparticles traveling through the
blood vessels. This paper presents a detailed description of the
sensing system and, more importantly, proves its feasibility, by
utilizing accurate models for intra-body light propagation and
nanoparticle scattering processes. The numerical results show
that with a certain density of nano-biofunctional particles, the
reconstructed Raman spectrum can be recovered and utilized to
accurately extract the targeted intra-body information.

Index Terms—Cooperative Raman spectroscopy, Signal estima-
tion, Wireless intra-body communications, Wireless nanosensor
network.

I. Introduction
Driven by the development of nanotechnology, emerging

novel nanosensors have been envisioned to provide unprece-
dented sensing accuracy for many important applications, such
as food safety detection, agriculture disease monitoring, health
monitoring, drug delivery, and genetic engineering, among
others [1]–[3]. Since nanosensors can interact directly with
the most fundamental elements in matter, e.g., atoms and
molecules, its sensitivity is high and the detection is in real-
time. One of the most promising applications of nanosensors
is in-vivo biosensing [4], [5], where nanosensors are injected
into human body to collect real-time information for disease
detection and health monitoring. Most of the diseases can
be treated at their early stages. Moreover, the information
provided by nanosensors can help us understand diseases and
bio-functions at very fundamental level and this can give more
detailed information, which have never been found at the
macroscopic level.

This work was supported by the US National Science Foundation (NSF)
under Grant No. CBET-1445934.

The use of nanoscale communication techniques can enable
data transmission among nanosensors. However, there are two
fundamental limitations of directly using active nano-sensors
in human body. First, on the one hand, wireless nanosensors
require continuous power supply to support wireless data
transmission and motion control. On the other hand, due to
the limited size of the nanosensor, a large battery cannot be
equipped and, even worse, recharging the battery is di�cult.
Second, the wireless nanosensor requires circuitry and antenna
to process and radiate wireless signals, which further increas-
es its size. In order to alleviate the side-e↵ects caused by
nanosensors in human body, we need to reduce its size by
removing the battery and wireless components.

Metallic nanoparticles coated with Raman active reporter
molecules have been widely used as surface enhanced Raman
scattering labels for multiplexed diagnosis and bio-detection
of DNA and proteins [6]. This is a promising solution since
it does not require power and wireless components on the
nanoparticles. Their motion can be driven by the dynamic
fluids in human circular system and the information can be
delivered by electromagnetic scattering. The Raman active
reporter molecules can interact with chemicals inside human
body and the incident single-frequency optical light can be
scattered into a wide frequency band with unique power
spectrum due to molecule vibration. Based on this unique
spectrum, we can identify the molecules inside human body.
The Raman active reporter molecules are placed on the surface
of metallic nanoparticles to enhance the scattering e�ciency
in order to improve the detected power.

While this solution can dramatically reduce the size of
the nano-device that is injected into human body, it still
has limitations, which prohibit it from being widely used.
First, a laser is needed to excite the engineered nanoparticle
inside human body and a spectrometer is demanded to detect
scattered Raman signal. Both the laser and the spectrometer
are bulky and expensive and, thus, not portable and a↵ordable.
In addition, the accuracy of this sensing setup is not high
enough since the scattered Raman signal is much weaker than
the emitted signal by the laser due to the small scattering
cross section of the nanoparticle and the dispersive and lossy
propagation medium.

To address the aforementioned challenges, we propose the
concept of cooperative Raman spectroscopy. The system con-
sists of external nanosensors and internal nano-biofunctional
particles. The bulky, expensive lasers and spectrometers are
replaced with distributed nanosensors, which can both emit
and detect optical signals, by leveraging the state of the art in
nano-lasers and and nano-photodetectors [7]. The nanosensors
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are placed on a smart ring, which can reduce the distance
to the intra-body particles to increase the received signal
strength. Moreover, by letting the nano-sensors distributed, we
can increase the diversity of detection and optimally allocate
resources to make the system more robust.

In this paper, we design a sensing system for cooperative
Raman spectroscopy. By using nanosensors equipped with
nano-emitters and nano-detectors, we first present the system
architecture, where the processes of signal generation, scat-
tering, and detection are introduced. Based on the operational
framework, we provide theoretical models to describe each
part of the system, including signal transmission, noise, nano-
biofunctional particle density, and nanosensor’s distribution.
Di↵erent from wireless signal propagation in Radio Frequency
(RF) band, the optical signal received by the detector subjects
to a Poisson distribution and the signal is distorted by dark
current noise. Moreover, the nano-biofunctional particles may
also interact with unexpected molecules, which introduces
more noises. Both of the two noises are taken into account
in the system model. Next, we derive the expected detected
power of each nanosensor using the stochastic system model.
Based on the theoretical model and nanosensor observations,
we provide a Raman signal estimation algorithm to reconstruct
the spectrum. The numerical simulation validates the accuracy
of the proposed estimation method.

The remaining part of this paper is organized as follows. The
system architecture and operational framework are introduced
in Section II. After that, we present the system model and
describe the main factors that can a↵ect the sensing perfor-
mance in Section III. This is followed by the derivation of the
expected detected power by each nanosensor and the signal
estimation algorithm in Section IV. The proposed system
performance is numerically evaluated in Section V. Finally,
this paper is concluded in Section VI.

II. System Architecture and Operational Framework
The system architecture of cooperative Raman spectroscopy

consists of three important units, namely, the external ex-
citation and sensing system on a ring, the internal nano-
biofunctional particles, and data fusion and processing unit.
In the following, we first introduce the system architecture.

A large number of interconnected nanosensors are installed
on a ring and each nanosensor has some nano-transceivers,
which are able to both emit optical signal and detect elec-
tromagnetic scattering from the internal nano-biofunctional
particles. The nanosensors are uniformly distributed on the
ring. In this way, no matter how the ring is worn, it does not
a↵ect the detection accuracy. In addition, the nano-transceivers
on a nanosensor emit signals in the same frequency, but detect
signals at di↵erent frequency bands. The scattered signal from
the particle occupies a wide spectrum. However, it is challeng-
ing to design a compact broadband nano-detector. Therefore,
the detector is narrow-band and each detector measures the
received signal power at a single frequency.

The nano-biofunctional particles coated with di↵erent dye
or Raman active reporter molecules can be used as surface-
enhanced Raman spectroscopy labels for multiplexed diagno-
sis and bio-detection of DNA and proteins with very high
sensing specificity. A large amount of particles are injected
into human circulatory system as a mixture with other bio-
friendly solution. In the blood vessels, the particles meet with

di↵erent kinds of molecules including those generated by
the targeting diseases. Since di↵erent chemical reactions can
generate di↵erent coat on the particles, once the particles are
excited by the incident wave, the power would be scattered
into di↵erent frequencies and a unique power spectrum can
be created. Consequently, we can identify the molecules that
the particles met in the blood vessels based on the spectrum.
However, since particles may meet with many other unex-
pected molecules, the detected power may not solely come
from the targeted molecules. In other words, the particles are
contaminated and the scattered signal consists of noise caused
by unpredictable molecules.

Once the raw spectrum data are collected by each sensor,
there are two di↵erent ways to reconstruct the spectrum and
detect the molecules. 1) As shown in Fig. 1(a), the first
one is a centralized architecture, where the raw spectrum
data are sent directly to a data fusion center to do further
process and identification. This method can provide the most
accurate results since all the raw data are considered in the
detection algorithm. Also, the data fusion center can first
compress the raw spectrum data and then send to the smart
phone. In this way, the smart phone will perform spectrum
reconstruction and molecule identification. However, there are
two disadvantages, which can prevent us from applying this
architecture. First, the communication overhead is significant
since all the data need to be transmitted, which can increase the
system delay and real-time detection may not be possible. The
second disadvantage is that the signal processing in data fusion
center requires a large amount of energy and computation
resource, which increases the burden of the ring. 2) The second
architecture relies on a distributed sensing concept as shown in
Fig. 1(b). Each of the nanosensor performs detection algorithm
and send the results to the data fusion center. Based on the
local detection results, the data fusion center performs a global
detection and send the detected results of the molecules to the
smart phone. In this way, most of the data are processed locally
and thus the communication overhead can be dramatically
reduced. Nevertheless, this system requires more computation
resources for the nanosensor and the detection accuracy may
not be as accurate as the centralized system.

The operational framework of the cooperative Raman spec-
troscopy consists of three phases.
• First, the synchronized emitters on the ring radiate elec-

tromagnetic signals at the same frequency into a finger.
The frequency has been selected to minimize the signal
propagation loss in intra-body environment.

• Second, the flowing particles in blood vessels receives
the radiated electromagnetic signal from one or many
emitters. Then, the particles scatter the power into a wide
spectrum.

• Lastly, the scattered signal propagates towards detectors
and then the power at a specific frequency is detected.
After that, one can use di↵erent data fusion and detection
architectures as shown in Fig. 1(a), and Fig. 1(b) to
process the sensed data, upon which the machine learning
algorithms can be applied to identify the category of the
molecules interacted with the particles.

III. SystemModel
Consider that there are N

s

nanosensors uniformly installed
on a ring and each nanosensor has N

f

nano-transceivers.
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(a) Centralized detection system. All the sensors first send raw data
to a data fusion center on the ring. Then, the data fusion center can
either process or send the raw data to a smart phone.

Nano-sensor 1

Nano-sensor 2

Nano-sensor N

Detection system on the ring

Smart 
Phone

Data 
fusion 
center

Intra-body 
environment

Raw spectrum data

Raw spectrum data

Raw spectrum data

detection results

Processor on Nano-sensor 1

Processor on Nano-sensor 2

Processor on Nano-sensor N

detection results

detection results

detection results

(b) Distributed detection system. Each sensor can first sense and process the raw data
and make its own decision based on its observation. Then, the detection results of
each sensor will be sent to a data fusion center on the ring to do a global detection.
Finally, the detection results are reported to a smart phone.

Fig. 1. Centralized and distributed detection system architecture.

Each nano-transceiver has one emitter and one detector. The
whole Raman spectrum is divided into N

f

sub-bands and
each detector on the nanosensor detect signals in one sub-
band. Note that due to the noise and low-density of nano-
biofunctional particles, some detectors may not receive enough
power and thus multiple nanosensors are employed to make
the system reliable. Since the bone is a much denser medium
than other layers of the finger, it can block the propagation
of electromagnetic field at optical band. We assume both
the finger and the bone are cylinders with radius r

f

and r

b

,
respectively. The blood vessels, including artery, vein, and
capillary, are randomly distributed between the skin and bone
with density �

b

. In each blood vessel, the particles arrive
with a density proportional to the area of the blood vessel’s
cross section, which is denoted by �

par

= �0s

b

, where �0
is the particle density of a unit area and s

b

is the area of
a blood vessel’s cross section. In reality, �0 is a function
of time. When the particles are injected into the circulatory
system, �0 gradually increases. After a while, some of the
particles are disposed by natural physiological actions and the
density gradually decreases. In this paper, we consider the
sensing is quasi-static since the optical light propagates much
faster than nano-biofunctional particles’ movement. Thus, in
the following the particles are assumed to be static and the
optical channel remains constant during the sensing period.

A. Signal Propagation Model

The optical signals have to penetrate skin, fat, and blood
vessels to reach the nano-biofunctional particles. Extensive
analytical and empirical models have been derived to capture
this process [8]–[11]. There are many categories of cells and
tissues and their properties vary from person to person. In [12],
an analytical channel model for intra-body in-vivo biosensing
is developed by considering the properties of individual cells.
In this paper, we use the same model to describe the propa-
gation loss of EM wave radiated by the emitters, which can
be simply written as

h( f , d) = e

�µ( f )d, (1)

where µ( f ) is the loss coe�cient, d is the propagation distance
and f is the operating frequency. Besides this large scale
fading, due to the multipath e↵ect caused by scattering, a
Rayleigh fading coe�cient is also considered whose scale
parameter is �.

B. Noise Model

The noise in a sensing system can deteriorate the detection
results and significantly a↵ect the sensing capability. In the
cooperative Raman spectroscopy system, there are primarily
two noises, namely, molecules noise and shot noise.

1) Molecules Noise: The nano-biofunctional particles flow
through the circulatory system and interact with plenty
of molecules. On one hand, they meet with the valuable
molecules carrying information about diseases and then the
important electromagnetic properties are changed on their
surfaces. Through optical scattering, we can detect those
molecules by identifying the power spectrum. On the other
hand, the nano-biofunctional particles also encounter many
unexpected molecules in intra-body environment. Although the
particles are not designed to interact with these molecules,
some chemical reactions can happen and change the parti-
cles’ properties randomly, which are reflected in the received
power spectrum. The original power spectrum is distorted by
unexpected noise power. As a result, to accurately reconstruct
the power spectrum, the molecule noise has to be taken into
account.

Since the molecules in human body have a large variety of
categories, which demonstrate di↵erent resonant frequencies
in Raman spectrum, we can consider the noise power is the
same for all the frequency bands. Therefore, the noise can be
considered as white noise with uniform power across a wide
band. Due to the large amount of molecules, the noise can be
considered as positive and negative values and its distribution
is Gaussian with mean value 0 and standard deviation �

m

.
Consequently, the noise caused by molecules can be regarded
as additive white Gaussian noise N(0,�2

m

).
2) Shot Noise in Detector: The noise in the detector is

mainly shot noise, whose power is given by

P

s = 2q�
d

P̂

dt

B

sub

(2)

where q is the electronic charge, �
d

is the detector’s responsiv-
ity, P̂

dt is the total detected power of both signal and molecule
noise, and B

sub

is the sub-band bandwidth.

C. Particle Scattering Model

The nano-biofunctional particles first absorb power from
emitters and then scatter the power with unique information.
Therefore, the particles can be regarded as an information
source, which sends encoded data to detectors, i.e., its scat-
tering coe�cients. As shown in Fig. 2, the scattered signal by
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Fig. 3. Illustration of light beam and detector’s e↵ective area. The outer circle
is the cross section of finger and the inner one is the cross section of bone.

the nano-biofunctional particle is spreaded on a wide spectrum
with varied signal intensity. This spectrum is divided into sub-
bands and the amplitude in each sub-band is considered as
the transmitted signal. This power conversion consists of two
steps. First, the received power by the particle at frequency f

t

is absorbed. Then, the nano-biofunctional particle scatters the
power into a wide frequency band. As a result, the scattering
coe�cient can be written as ⌘( f

t

, f

i

), where f

i

is the center
frequency of a sub-band.

D. Particle Arriving Model

The particles are injected into circulatory system with a
certain density. They arrive at the target sensing area with a
diluted density. To model this process, we consider the arrival
rate of particles in a unit cross section of blood vessel is
�0. Since di↵erent blood vessels have di↵erent cross section
areas, their particles arriving rates are also di↵erent. Moreover,
the process of particle moving is modeled as Poisson point
process. The number of the particles that can be excited
by the emitter depends on the position of the blood vessel,
the distance to the emitter, and the density of the particles.
The radiated electromagnetic field by an emitter can cover
a three dimensional cone and each detector can receive the
electromagnetic radiation from the same cone. As shown in
Fig. 3, the blood vessels are homogeneously distributed be-
tween skin and bone. The emitter and detectors have their own
e↵ective area within which the gain is a constant. The number
of blood vessels and nano-biofunctional particles within a
cone are random, which depend on number of blood vessels
and particle density. Also, particles can receive power from
multiple beams. In this paper, we consider adjacent beams
that are overlapped work in di↵erent time slots to eliminate
the correlation among them, i.e., in each time slot the particles

ch
D

h'

d

Fig. 4. Light beam and angle.

within a beam can only receive power from one emitter. Since
the beam angles of the emitter and detector are small, we
safely assume that all the points on the same horizontal line
has the same distance to the emitter. To find the number of
particles in a blood vessel and the received power, we need
to find the distributions of the length of blood vessels within
a cone and their distance to emitter. Given the blood vessel’s
e↵ective length l, the number of particles within it is given as

P(N
p

= n|L = l, S
b

= s

b

) =
(�0s

b

l/u)n

n!
e

��0 s

b

l/u, (3)

where s

b

is the cross section area of the blood vessel and
u is the velocity of blood. We assume the cross section of
the blood vessel is uniformly distributed in [S

l

, S
u

] with a
probability density function f (s

b

) = 1/(S
u

� S

l

).

IV. Raman Spectrum Estimation
Based on the system model, in this section we provide

a method to reconstruct the Raman spectrum based on the
detected signal power and priori knowledge of the signal
propagation and system configuration. The estimation is based
on the expected detected power. We derive the analytical
model for it and then by averaging the multiple observations
of nanosensors, we can find the scattering coe�cients of the
nano-biofunctional particle.

A. Expected Detected Power

It is worth noting that, since the bandwidth B

sub

is small
enough, the channel can be considered as flat fading within
a sub-band. Also, our analysis is general and it holds for all
the sub-bands. We first derive the expected detected power
for one detector. Consider that there are N

p

particles in one
or several blood vessels covered by optical cone of both an
emitter and associated detector. The expected detected power
can be expressed as

E(Pd) = E(
N

pX

i=1

P

d

i

) (4)

⇡ E(
R

sX

i=1

N̂

p

iX

k=1

P

d

i,k) ⇡
R

sX

i=1

E(N̂
p

i

)E(P̂d

i

), (5)

where P

d

i

is the nano-sensor detected power scattered by the
i

th nano-biofunctional particle, N̂

p

i

is the nano-biofunctional
particle number within the sub-region, and P̂

d

i

is the expected
detected power scattered by sub-region i. As shown in Fig. 4,
we divide the cross section of the cone into sub-regions with
height �h. Then, we classify the nano-biofunctional particles
into each sub-region based on their position and in this way (4)
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can be approximated by (5). Here, the height �h is considered
as the average height of the blood vessel’s cross section, which
is �h = 2

q
S

u

+S

l

2⇡ . Next, we look at each sub-region and find
the expected detected power.

In each sub-region, we consider all the nano-biofunctional
particles have the same distance to the detector since the
beam angle of the emitter is very small. The expected nano-
biofunctional number in a sub-region can be found by using

E(N̂
p

) =
1X

n=1

h
nP(N̂

p

= n)
i
. (6)

Due to the complicated blood vessel distribution and their
di↵erent cross section areas, here we consider an equivalent
scenario, i.e., the randomly distributed blood vessels on a plane
of the cone are considered as one equivalent blood vessel.
The average length of a blood vessel in a sub-region can be
expressed as

l̂ =

Z
d tan ↵2

0

2
q

(d tan ↵2 )2 � x

2

d tan ↵2
dx =

⇡d tan ↵2
2

. (7)

The cross section of the equivalent blood vessel can be
approximated by S

u

+S

l

2 since the cross section is uniformly
distributed. The expected number of blood vessels in a sub-
region can be expressed as

�
eq

=
�

b

d�h tan ↵2
2r

2
f

. (8)

Then, the length of the equivalent blood vessel is l

eq

= l̂ · �
eq

and the probability that there are n nano-biofunctional particles
in the equivalent blood vessel can be written as

P(N̂
p

= n) =
(�0s

eq

l

eq

/u)n

n!
e

��0 s

eq

l

eq

/u. (9)

Next, the expected detected power from one particle at dis-
tance d is given as

E(P̂d

i

) = E[P
t

G

t

( f

t

)htp⌘( f

t

, f

i

)G
r

( f

i

)hpr], (10)

where P

t

is the transmitted power by the light emitter, G

t

( f

t

)
is the gain of the light emitter at frequency f

t

, h

tp is the light
propagation loss from the emitter to the nano-biofunctional
particle, h

pr is the light propagation loss from the nano-
biofunctional particle to the detector, ⌘( f

t

, f

i

) is the scattering
coe�cient of the particle, and G

r

( f

i

) is the gain of the detector.
Since on the left-hand-side of (10) only h

tp and h

pr are
random variables (they are functions of distance and subject
to Rayleigh fading) and they are independent, (10) can be
simplified as

E(P̂d

i

) =
⇡

2
P

t

G

t

( f

t

)⌘( f

t

, f

i

)G
r

( f

i

)htp( f

t

, d)hpr( f

i

, d)�2. (11)

By substituting (9) and (11) into (5), we can obtain the
expected detected power by a detector on a nanosensor.

TABLE I
Numerical Parameters

Parameter Value Parameter Value

�
b

106 /m2
u 0.45 m/s

S

u

300 nm2
S

l

3 nm2

r

f

5 mm r

b

2.5 mm
↵ ⇡

36 G

s

30 dBi
G

r

30 dBi B

w

1 THz

B. Spectrum Reconstruction

To reconstruct the spectrum, we need to estimate the value
of ⌘( f

t

, f

i

), which is the only unknown parameter in the
expected detected power (4). As discussed in the noise model,
besides the detected signal power, there are also molecule
noise P

m and shot noise P

s. The overall detected power by
the nanosensor can be expressed as

P

od = �⌘( f

t

, f

i

) + P

m + P

s, (12)

where � = E(Pd)/⌘( f

t

, f

i

). A nanosensor observes a sequence
of detected power [P̃od

1 , P̃
od

2 , · · · , P̃od

N

o

] and the mean value is
P̂

od, upon which one can estimate the scattering coe�cient.
Since P

m ⇠ N(0,�2
m

), the Maximum Likelihood (ML) estima-
tion of ⌘( f

t

, f

i

) is

⌘̂( f

t

, f

i

) =
P̂

od � P

s

�
. (13)

In this way, each detector can estimate the scattering co-
e�cient at its own operating frequency. Based on the esti-
mated coe�cients, we can reconstruct the Raman spectrum.
However, there are two primary factors that can strongly
a↵ect the accuracy of the estimation, i.e., the noise and nano-
biofunctional particle density. To evaluate the performance
of the spectrum reconstruction, we use the normalized mean
square error

P
N

f

i=1[1 � ⌘̂( f

t

, f
i

)
⌘( f

t

, f
i

) ]
2/N

f

as a metric to evaluate the
e↵ect of both noise and particle density.

Since the density of the nano-biofunctional particle is not
high when compared with blood cells, not all the detectors can
receive the scattered Raman signal. Therefore, the distributed
detection architecture su↵ers from incomplete information and
it requires adjacent nano-sensors exchanging their data, which
results in very complicated algorithm and it is out of the scope
of this paper. Here, we consider the centralized architecture
and the data fusion center can combine the sensed data. For
instance, in the i

th sub-band, there are N

s

detectors. The
detected power is

P
N

s

k=1 P̂

od

k

and the expected detected power
is N

s

E(Pd). Similarly, we can use (13) to find the estimated
scattering coe�cient.

V. Numerical Analysis
In this section, we numerically analyze the performance of

the system. The parameters utilized are presented in Table I.
In the numerical simulation, we use a realistic Surface

Enhanced Raman Spectroscopy parameters, which were mea-
sured through experiments [13]. The Raman shift is within
[400,2300] cm�1 and the incident light wavelength is 755 nm.
The particle density stands for the number of particles in a unit
area. The transmission power of an emitter is set as 0 dBm.
First, we set the molecule noise coe�cient as 1⇥10�14 and vary
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Fig. 5. E↵ect of particle density on estimation error.
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Fig. 6. E↵ect of molecule noise on estimation error.

the nano-biofunctional particle density. Since the shot noise
power is almost a constant, it does not create randomness. As
shown in Fig. 5, the increase of particle density can significant-
ly reduce the mean square error. When the particle density is
low, most of the sensors cannot detect scattered signal since
there is almost no particles within its e↵ective cone. Even
worse, some of the sub-bands cannot detect any signal and
thus the information of the sub-bands are missing. When it
happens, we consider the sub-band has the same amplitude
as its neighborhood sub-band. In Fig. 6, the particle density
is kept as 1010 and the molecule noise is varied. As we can
see, the molecule noise can dramatically a↵ect the estimation
accuracy as its power increases. With high molecule noise, the
scattered signal by the targeted molecules can be submerged.
In Fig. 7 and Fig. 8, we provide two examples of reconstructed
Raman spectrums with di↵erent nano-biofunctional particle
density. As can be seen from the figures, when particle density
is large enough, the reconstructed spectrum matches well
with the original spectrum. However, if the nano-biofunctional
particle density is small, there is a large gap between the
estimated spectrum and the original spectrum. Especially in
Fig. 8, when Raman shift is larger than 1800 cm�1, there is a
flat area where the signal for the sub-bands cannot be detected
due to the low density of the particle.

VI. Conclusion
Biosensing using nanotechnology can provide unprecedent-

ed accuracy for bio-detection of DNA and proteins, and
disease diagnosis and treatment. Although conventional Ra-
man spectroscopy can provide information at nanoscale in
intra-body environment, the equipment utilized is bulky and
expensive. In this paper, we propose a cooperative Raman
spectroscopy using a large number of nano-transceivers on
a ring. In this way, the detection device can be portable and
a↵ordable. The system architecture and operational framework
are presented. Based on a stochastic system model, we provide
a spectrum estimation and reconstruction method. The e↵ect
of the nano-biofunctional particle density and molecule noise
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Fig. 7. Reconstructed Raman spectrum with 1011 particle density and 10�14

molecule noise coe�cient.
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Fig. 8. Reconstructed Raman spectrum with 109 particle density and 10�14

molecule noise coe�cient.

are analyzed and the accuracy of the sensing system are
evaluated. The results shown that the cooperative Raman
spectroscopy is able to provide accurate estimation of the
Raman spectrum, which can be utilized for molecule and
chemicals identification.
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