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Wireless communications sensing and
security above 100GHz

Josep M. Jornet 1, Edward W. Knightly2 & Daniel M. Mittleman 3

The field of sub-terahertz wireless communications is advancing rapidly, with
major research efforts ramping up around the globe. To address some of the
significant hurdles associated with exploiting these high frequencies for
broadband and secure networking, systems will require extensive new cap-
abilities for sensing their environment and manipulating their broadcasts.
Based on these requirements, a vision for future wireless systems is beginning
to emerge. In this Perspective article, we discuss some of the prominent
challenges and possible solutions which are at the forefront of current
research, and which will contribute to the architecture of wireless platforms
beyond 5G.

Over the last two decades, wireless communications exploiting radio-
frequency waves have become a ubiquitous feature of modern life.
With each subsequent advance in technology has come countless
new tools and capabilities, transforming the way we live. Now, as the
rollout of 5G systems continues, researchers are considering the
design of subsequent generations of networks, as well as visions for
future implementations of Wi-Fi, Bluetooth, and other short-range
wireless systems. It is worth noting that most previous wireless
platforms, from the days of Marconi, have been confined to operate
in the frequency range below a few gigahertz. Yet, rapid growth in
demand for wireless services has changed the game; we are now
forced to consider using higher frequencies, in order to find the
bandwidth needed to support continued exponential growth in
wireless traffic. One of the novel features of modern Wi-Fi and 5G
variants such as IEEE 802.11ay1 involves their ability to access higher
frequencies in the millimeter-wave range, above 10GHz. As these
systems mature, it is therefore natural that research interests have
now begun to turn to even higher frequencies. Like themmWaveWi-
Fi and 5G bands, the use of these higher frequencies is motivated in
large part by the desire for access to larger bandwidth, and the
associated higher data rates. Indeed, although the maximum data
rate that can be supported within the 5G standard exceeds 7 gigabits
per second (Gbps), more than an order of magnitude larger than the
fastest 4G data rate, the huge (and ongoing) growth in demand for

wireless access hasmade it clear that even higher rateswill be needed
in the future2.

For this reason, the cutting edge of wireless research lies at fre-
quencies above 100GHz3, often referred to as the “terahertz (THz)
range”.Mostof this research is focusedona few specificbroad spectral
bands, including the waveguide D band (110−170GHz) which has been
previously employed for television broadcasts during the Beijing
Olympics4, and the higher frequency bands defined by the recent IEEE
802.15.3d standards document (252−322GHz)5. These frequencies are
well beyond even the highest millimeter-wave bands included in
today’s Wi-Fi and 5G standards.

Opening this relatively unexplored realm of the electromagnetic
spectrum will involve a host of challenging new research problems. In
this Perspective article, we discuss some of the interesting issues facing
researchers in the race to develop ultra-high-frequency wireless sys-
tems. Many of these challenges are associated with aspects of the
physics of the interactionof thesehigh-frequencywaveswith theworld.
Above 100GHz, system designers will need to consider some physical
regimes that have not previously been relevant for legacy wireless
systems, or even in some cases for the mmWave bands of 5G. We first
consider a few of themore prominent issues associated with these new
operating regimes. We note that near-infrared or visible light optical
communication systems, operating at even higher frequencies, are also
of significant research interest, but are beyond the scope of this article.
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Some challenges
One aspect of this discussion can be understood from the Friis equa-
tion, whichdescribes the power received by an antenna PRX in a line-of-
sight point-to-point wireless link. Expressed in dB, this relation is:

PRX =PTX +GT +GR�20 log10ð4πD=λÞ ð1Þ

Here, PTX is the power generated by the transmitter, GT and GR are the
transmitter and receiver antennagains respectively (in dBi), and the last
term, the free-space path loss (FSPL), describes the decrease in power
per unit area of an expanding electromagnetic wavefront in terms of
the propagation distance D and the wavelength λ6. This term becomes
dominant at high frequencies. When considering an increase in the
frequency by a factor of 100 (for example, from the typical 4G cellular
frequency of 2.8 GHz to 280GHz, a frequency in the 802.15.3d
standard), the FSPL increases by 40dB (see Fig. 1). Because the FSPL
is smaller at lower frequencies, high-gain antennas are not always
required; it is possible tooperate awireless link inwhich the transmitter
broadcasts to a wide range of angles. For example, typical cellular
antennas often span a 120° broadcast sector. At higher frequencies,
the increasing FSPL can be offset with high-gain antennas, which
concentrate the radiated power into a smaller angular range. Above
100GHz, these broadcasts begin to act more like beams, propagating
in a well-defined direction with low divergence7. There are of course
many possible options for high-gain antennas, but translating these to
the THz range is not always trivial, due to (among other things) the
requirement of broadband operation. For example, phased array
antennas are a well-established technology at lower frequencies,
employing tuned phase shifters for each of the antenna elements in
an array to implement beam steering or wavefront shaping. This
approach, also being used in 5G systems, becomesmore challenging as
we design systems with larger fractional bandwidths. Phase shifters
commonly operate at a fixed wavelength or frequency. When injecting
a broadband signal to a phase shifter, the different frequency
components experience different phases, resulting in beam squinting.
Instead, a true-time-delay operation, in which all the signal frequency
components experience the same phase delay, may be required in
place of a simple phase shifter for individual elements of an antenna

array8. The design of active efficient high-gain antennas with suitable
form factors and efficiency remains an important research challenge.

A second important distinction between low and high-frequency
propagation involves atmospheric attenuation (which has been
neglected in Eq. (1) above). This loss also increases with frequency, in
the formof several spectrally narrow absorption peaks riding on top of
a smoothly increasing continuum absorption. In terrestrial systems, all
of the important absorption lines above 120GHz are due to rotational
and ro-vibrational excitations in gas-phasewatermolecules9,10, someof
which are strong enough to inhibit long-range propagation for fre-
quencies near their line centers. These discrete absorption lines,
therefore, serve to break the spectrum up into a series of broad bands
which are well suited for transmission over longer distances, in which
the relatively small continuum background (due to water dimers and
other species) is the dominant contribution to atmospheric loss11. In
fact, these absorption resonances need not always be considered a
hindrance; with careful frequency tuning, they can be exploited for
enhanced wireless security12. Despite some older conventional wis-
dom, the atmosphere is not opaque to radiation in the 100–1000GHz
range; if the H2O lines are avoided, point-to-point links in the km range
are certainly feasible4,13–15. Inclement weather also contributes addi-
tional loss;16,17 however, these may be tolerable under certain condi-
tions, and indeed terahertz beams appear to be more robust against
atmospheric scintillation and certain weather conditions (e.g., fog)
than, for example, free-space optical signals in the near-infrared18.

A third issue of note is of the roles of scattering from surfaces and
of material absorption. When considering interactions with surfaces,
the characteristics of the scattered field are determined by the
roughness of the surface, in comparison with the wavelength of the
radiation, aswell as the extent towhich the surface absorbs (rather than
scatters) the incoming radiation. A smooth (compared to lambda)
surface reflects like a mirror; a rough surface produces a diffuse (not
strongly directional) scattered wave. In a typical indoor environment,
for instance, conventional wireless systems operate at frequencies
where absorption is low in many materials, and where many surfaces
are smooth compared to the (longer) wavelength. So, it is generally
assumed that there can be many multiply-scattered paths between the
transmitter and receiver, producing a rich scattering environment in
which the field at any location is a stochastic superposition of many
different wavelets. In contrast, the wireless channel at THz frequencies
is quite different19. Typically a propagating wave experience much
higher attenuation when interacting with most surfaces, due to
absorption losses in the materials20, and commonly encountered sur-
faces can either be smooth or rough, in comparison with the (much
smaller)wavelength (see Fig. 2). As a result, both indoor21 andoutdoor22

environments are typically much more sparse, with fewer paths con-
necting the transmitter to receiver. Because many surfaces are smooth
enough to act like mirrors, scattering in a specular direction (i.e., angle
of reflection = angle of incidence) can often be dominant. Researchers
have therefore been able to exploit ray tracing as an accuratemeans for
predicting and understanding signal paths in THz propagation
simulations21,23. In addition, due to the opacity of many objects
including people, issues such as blockage of the direct line-of-sight
(LOS) path can pose challenges for maintaining connectivity, as would
be the case with a laser-based free-space optical link. However, due to
themillimeter-scale wavelength, steering around such blockage events
by exploiting a specular reflection from a surface in the environment is
more feasible at THz frequencies24. Even non-specular reflections (dif-
fuse scattering from rough surface25) can be employed to maintain a
link, although obviously with a lower signal-to-noise ratio26 and added
dispersion27. The shift from omnidirectional broadcasts with rich
scattering to directional beams with sparse paths also has important
implications for the security of such communication channels, ren-
dering eavesdropping more challenging. Yet, vulnerabilities due to
scattering still remain28–30, and must be considered in system design.
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Fig. 1 | Atmosphere and FSPL. The attenuation of a propagating radio wave due to
both free-space path loss and atmospheric absorption, for an assumedpropagation
distance of 100 m, at a temperature of 15 °C and relative humidity of 59%, using a
standard atmospheric model (see [10, 11]). The shaded areas indicate the range of
frequencies corresponding to legacy wireless systems, the 5G millimeter-wave
range, and the THz spectrum. The hatched areas are the two bands of significant
interest for communications mentioned in the text.
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Defining wavefronts and waveforms
These various novel features of THzwaves force us to rethink common
practices in wireless communication systems and, at the same time,
open the door to new strategies not available in traditional wireless
networks in microwave and even millimeter-wave bands.

On the one hand, relating to the spatial behavior of terahertz
radiation, the requirement for high-gain directional antennas strongly
suggests the use of radiating structures that are much larger than the
wavelength. By recalling that the far field of an antenna occurs for
distances greater than 2 ×D2/λ, where D is the antenna’s largest
dimension, it is likely that many wireless systems at terahertz fre-
quencies will operate in the near field. For example, a 10 cm antenna,
such as a dish antenna or an antenna array, at 130GHz has a far-field
distance of 8.6m and the same antenna size at 300GHz has a far-field
distance of 20m, larger than many indoor environments in which a
THz LAN could be employed. This is a major distinction from lower
frequency wireless systems, which generally operate exclusively in the
far field.

This result has multiple consequences. First, wireless propaga-
tion, channel, and multi-user interference models, which have been
derived under the assumption of far-field operation6, cannot simply be
repurposed for higher frequency systems. Indeed, many models for
terahertz communications continue to neglect to capture near-field
effects31. Second, most algorithms behind the control of smart direc-
tional antenna systems, including beamforming and beam-steering,
have also generally been developed under the far-field assumption32.
For many possible antennas, including large radiating structures such

as the increasingly popular intelligent surfaces33, this is not the case
even at lower frequencies.

To overcome this latter challenge, there are several recent
works34,35 that explore beam focusing as a way to achieve
beamforming-like capabilities but in the near field. In beam focusing,
the weights or phases at different antenna elements are set to emulate
that of a dielectric lens.While this is a valid solution for static scenarios,
tracking and constantly changing the point on which the signal needs
to be focused results in a significant overhead in terms of signaling the
channel state information.

Going beyond beam focusing, if we are ready to abandon com-
mon practices and assumptions such as that the generated signal can
be approximated as a plane wave or a Gaussian directional beam,
operating in the near field opens the door to a host of new possibilities
in wavefront engineering (whereby wavefronts we refer to the spatial
intensity and phaseprofiles of the signals being transmitted). Although
many of these ideas have been considered for some time, for instance
in the optics community, it is only with the advent of directional links
that they may reach their full potential in wireless systems. For
example, at lower frequencies where received signals can often con-
tain rich multi-path components, it can be challenging to exploit
polarization diversity to double channel capacity. In contrast, such
strategies are likely to be far more effective with a line-of-sight direc-
tional link36.

Other important examplesmay arise from considerations ofmore
exotic wavefronts which can be prepared in the near field of an emit-
ting aperture. For instance, by adopting Bessel beams, i.e., beams
whose intensity profile in space can be described by a Bessel function
of a certain order37, a beam can focus (in the near field) not at a point
but along a line. This can drastically simplify the operational require-
ments in mobile networks. Moreover, Bessel beams exhibit a self-
healing property, i.e., even when partially blocked by an obstacle, they
can recreate the original intensity and phase profile at a distance.
Similarly, the use of accelerating beams such as Airy beams, which can
be programmed at the origin to bend after a given number of
wavelengths38, can also be utilized to overcome or minimize the
impact of obstacles, a major problem for practical mobile terahertz
communications and sensing systems. Figure 3 shows computed
cross-sections of a few of these options, illustrating the dramatically
different behavior that can be obtained in the near field of a trans-
mitting aperture.

Further, all these beams can also be engineered to carry orbital
angular momentum (OAM). Different OAM mode orders are ortho-
gonal, enabling the multiplexing of streams at the same frequency, at
the same time, and in the same direction39. As discussed in the
literature40, OAM multiplexing can be seen as a particular case of
multiple input multiple output (MIMO) communications, but one in
which channels are orthogonal from the start (and not because of how
multi-path propagation affects them). Moreover, while these wave-
fronts can be generated using static phase masks (such as axicons for
Bessel beams or spiral phase plates for different OAM modes), the
same can be achieved by the utilization of dense antenna arrays41,42,
which (unlike phase masks) could also in principle be dynamically
reconfigurable43,44. We note that the security vulnerabilities associated
with using such unusual wavefronts could be quite different from
those associated with conventional side-lobe eavesdropping or jam-
ming attacks45, and could offer new opportunities for enhancing link
security46.

On the other hand, relating to the frequency behavior of ter-
ahertz radiation, there is a need for waveforms, the temporal varia-
tions of the transmitted signals, that can overcome various
challenges, including those introduced by frequency-dependent
molecular absorption in the channel (see Fig. 1) and by increasingly
prominent hardware imperfections (e.g., nonlinearities in broadband
frequency up- and down-converting systems). As of today, there is no
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Fig. 2 | Links employing specular reflection. Measured bit error rate (BER) for a
2-m link which incorporates a specular reflection from a cinderblockwall, as shown
in the top left photo. The effects of absorption and scattering are separated by
measuring the link on the bare wall (blue points), the same wall with a conformal
metal foil coating that eliminates penetration into the cinderblock (red points), and
a flat metal plate which eliminates both absorption and scattering (black points).
The photo images in (a) depict the three situations corresponding to the mea-
surements in (b). Reprinted fromMa, J., Shrestha, R., Moeller, L. &Mittleman, D.M.;
Channel performance of indoor and outdoor terahertz wireless links. APL Photon.
3, 051601 (2018)., with the permission of AIP Publishing.
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answer to the question of what waveform will be used for 6G ter-
ahertz systems. While the common solutions at lower frequencies,
including orthogonal frequency division modulation/multiplexing
(OFDM), single-carrierOFDMalso knownasDFT spreadOFDM, or the
recently proposed orthogonal time-frequency-spatial modulation
(OTFS)47 could be adapted to terahertz frequencies, there are
also other options, including waveforms unique to the terahertz
band that enable applications not available at lower frequencies.
For example, very short pulses, just a few hundreds of femtoseconds
long, as in terahertz time-domain spectroscopy (THz-TDS)
platforms48 or BiCMOS impulse radiators49, can be utilized to
implement low-complexity non-coherent modulation which is able
to support a large number of users transmitting at very large
data rates over a short range, provided that proper equalization
techniques are implemented to compensate for the effects of multi-
path propagation2,50. This is particularly useful when the encoding
purposely biases the transmission of zeros over the transmission of
ones to overcome the impact of noise and interference. At the same
time, for longer communication distances, the broadening of the
molecular absorption lines results in narrower communication
bandwidths at longer distances. This effect can be exploited to use
the channel as a filter and help to separate simultaneous data streams
at the same frequency for users in the same direction but at different
distances (see Fig. 4)51. Moreover, if spectral efficiency and peak
data rates are not the drivers, there are other ways to exploit the

available bandwidth above 100GHz, for example in the form of
secure communication and spectrum sharing techniques based on
ultra-broadband spread spectrum52.

Ultimately, we envision that the spatial and spectral aspects of
terahertz signals should not be considered separately, but instead, the
spatial wavefront and temporal waveform should be jointly designed
to optimize the performance of systems and unleash this spectrum.
For example, as discussed above, different wavefronts are commonly
generated with different types of phase masks which can be, in some
cases, intrinsically narrowband. However, when trying to transmit
ultra-broadband signals through such structures, the resulting wave-
fronts are far from ideal. To prevent this, frequency-selective pre-dis-
tortion of thewaveformsbeing transmitted canbe employed to ensure
that the desiredwavefront is produced over the entire bandwidth. This
becomes even more important when producing complex wavefronts
using arrays that approximate the lens response with a discrete (rather
than continuous) pattern.

Components for the physical layer
Of course, the impact of the unique properties of terahertz radiation
does not endwith propagation, wavefronts, andwaveforms. It will also
influence the redesign of common devices in traditional systems for
operation at higher frequencies and will open the door to novel
hardware solutions that are not practical or even possible at lower
frequency bands.
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Fig. 4 | Hierarchical bandwidth modulation. Leveraging the spectral filtering
effect of atmospheric water vapor absorption resonances to implement hier-
archical bandwidth modulation, in which nearby users can access the full

bandwidth of the transmitted signal, while more distant users, whose channel
bandwidth is narrower, only employ the smaller range at the center of the
spectrum.

Fig. 3 | Engineered near-field radiation patterns.Calculated electric field (left) and intensity (right) patterns for three engineered near-field radiation patterns: a focused
Gaussian beam (top), a Bessel beam (middle), and an accelerating Airy beam (bottom).
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As one example, the small wavelength of terahertz waves leads to
small fundamental resonant antennas (e.g., dipole, slots, or patches).
When used individually, these antennas exhibit low effective areas
resulting in the very high spreading losses discussed above. However,
it is this small size of radiating structures that allows us to integrate
very large numbers of antennas in a very small footprint. For example,
in a 10 cm× 10 cm footprint, one could in principle integrate
200× 200 (40,000!) dipole antennas at 300GHz spacedλ/2 apart. The
fabrication of such large on-chip arrays is a significant challenge, but
rapid progress is being made43,44.

While such antennas or radiating elements can be envisioned,
there are other components besides the antennas that would need to
be integrated into the chip (potentially through 3D stacking),
depending on the application that is needed. For example, a true-time
delay controller per element would be needed to engineer the afore-
mentioned broadband wavefronts. Moreover, if the goal were to
develop transmitting or receiving antenna arrays that can support
MIMO communications, each antenna would require a complete RF
chain (i.e., a local oscillator,mixer,filter, amplifier, anddata converter).
Integrating such arrays is a major bottleneck with today’s electronic
and photonic transceiver technologies due to their size, as well as
packaging and thermal constraints. Arrays with element spacing
greater than λ/2produce far-field radiation patternswith grating lobes,
which could be leveraged for multi-beam systems, but are otherwise
not desirable. Instead, antenna array architectures aimed at minimiz-
ing the number of RF chains while minimally impacting the array
capabilities have been proposed, such as the array-of-sub-arrays
architecture47, in which separate RF chains drive separate subsets of
fixed or only phase-controlled antenna elements53. Other solutions
could be the adoption of signal processing techniques for sparse
antenna arrays, which so far have generally been used only in the
context of imaging54,55.

There are also a number of new technologies that only
become available when operating at terahertz frequencies (or
above). For instance, researchers have proposed the use of gra-
phene to build plasmonic transceivers and antennas that intrin-
sically operate in the terahertz band56. Graphene, which supports
the propagation of surface plasmon polariton (SPP) waves at
terahertz frequencies and at room temperature, can be used (1) as
a two-dimensional electron gas where plasma waves oscillations
at terahertz frequencies occur57, (2) as a plasmonic waveguide
where the properties of SPP waves can be electrically tuned58, and
(3) as the active element of a nano-patch antenna, able to convert
SPP waves into free-space electromagnetic waves59, all with
devices that are significantly smaller than the free-space wave-
length. While being sub-wavelength in size leads to low radiation
efficiencies, this can be compensated through dense integration
of the elements. Moreover, the sub-wavelength nature of each
radiator also leads to negligible mutual coupling as long as ele-
ments are placed more than a plasmonic wavelength apart. From
a signal processing perspective, being able to sample space with a
resolution higher than λ/2 leads to both oversampling gain and
the ability to engineer wavefronts (such as those noted above)
with much higher accuracy than traditional λ/2-spaced arrays
could ever support60.

The shift to higher frequencies also offers fascinating opportu-
nities to engineer deviceswith advanced functionality,which areeither
impossible or impractical at lower frequencies. For example, recent
research has focused on leaky-wave antennas, based on guided wave
deviceswhich incorporate amechanism to permit some fractionof the
guidedwave to ‘leak’ out into free space. This leaked signalmanifests a
strong coupling between the frequency of the radiation and the
direction in which it propagates. Leaky-wave antennas are neither new
nor exclusive to the terahertz range61. However, the wavelength scale,
and spectral bandwidth, of signals at these high frequencies means

that such devices can operate in a unique regime of form factor and
functionality, such that it is now plausible to consider new roles for
these components inwireless systems. Leaky-wave components can be
valuable for multi-frequency signal distribution (i.e., multiplexing)62

and for sensing tasks such as the radar-like location of objects within a
broadcast sector63. If both transmitter and receiver are equippedwith a
leaky-wave antenna, they can together provide a fast and efficient
method for simultaneously determining both the angular location of a
mobile receiver and its angular rotation relative to the transmitter64.
Building on this approach, recent work has demonstrated arrays with
true-time-delay elements to accomplish similar localization tasks65.
One could even envision creating arrays of leaky-wave devices for
enhanced wavefront control. This is another idea which has previously
been considered at lower frequencies66, but which could find new
possibilities in a different frequency regime.

The challenging propagation of terahertz waves and, in par-
ticular, the issue of blockage, motivates the consideration of
strategies to improve reliability. As noted above (see Fig. 2), non-
line-of-sight paths are available, even at these high frequencies,
although they are sparse relative to what is typically encountered
at lower frequencies. One interesting approach relies on the
development of devices that can help us engineer not only the
transmitter and receiver but also the propagation environment
(i.e., the channel). This idea has inspired a great deal of research
in the general area of intelligent reflecting surfaces, which could
be distributed throughout an indoor network to facilitate signal
distribution and overcome transient blockage events. As with
other devices discussed here, an intelligent reflecting surface
(IRS), such as those based on programmable reflectarrays, has
been considered previously at lower frequencies67. However, at
frequencies above 100 GHz and with current applications in mind,
the benefits that such structures bring to wireless systems may
now prove too valuable to ignore. Today, there are numerous
different technologies under consideration as the basis for IRS
devices. For example, smart surfaces have been proposed which
replace conventional switching elements employed at lower fre-
quencies, such as varactor diodes, with graphene patches56.
Dense reflectarrays with integrated switching elements have been
designed and implemented in silicon CMOS43,44 and in III-V
semiconductor platforms using high-electron-mobility transistor
(HEMT) structures68. We have also recently shown that array
devices, in the hands of a clever adversary, can also open up
interesting new security vulnerabilities (see Fig. 5)69. It is too early
to tell how this interesting approach to engineering the broadcast
environment will ultimately be achieved, but it is quite clear that
any of these possible solutions would drastically change the way
that networks are designed and operated.

Implications for the control plane
With the above considerations inmind, it becomes clear that networks
of the future, which have the capability to exploit THz frequency
bands, will operate quite differently from networks of today. One
obvious example is that a transmitter, employing a narrow pencil-like
beam, will need to know where to point it. This and other examples
suggest that networks will require joint communications and sensing
capabilities, and moreover that new approaches will be required for
managing these capabilities in order to ensure high quality of service
and efficient use of system resources.

As a first step, we note that radio sensing can have two purposes:
The first purpose is to identify clients, devices, and objects in the
environment, e.g., for presence detection and analysis of environ-
mental objects and their mobility to optimize the signal-to-noise of
wireless links70. The second purpose builds on the first and targets to
understand the RF environment for network optimization, e.g., to
localize uncontrolled sources of interference in order to avoid or null
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them.Today’s RF sensing applications are quite impressive and include
monitoring people in a roombehind a wall71 andmonitoring individual
heart rate72. Unfortunately, today’s RF methods have two fundamental
limits. First, their inputs are the gains and phases of the channelmatrix
H and they subsequently rely on the dimensionality ofH for resolution.
Thus, to improve resolution further, array sizes would need to
approach a massive MIMO scale, thus incurring the corresponding
issues of size, cost, power consumption, and computational require-
ments. Second, because these methods were designed to operate
below 6GHz, their wavelength is centimeter to decimeter scale, lim-
iting resolution correspondingly73.

As noted above, the use of THz frequencies opens up a number of
new possibilities for joint sensing and communications, with impor-
tant implications for the functioning of the control plane of the net-
work, which is responsible for functions such as beam alignment and
spectrummanagement. For example, as mentioned above, a directive
transmitter and receiver must dynamically align their beams toward
each other. In today’s standards for both 5G and Wi-Fi, a serial sector
sweep is used for initial beam alignment, to sequentially test different
directions. This trial-and-error method becomes increasingly cum-
bersome as beams become narrower. In contrast, the aforementioned
leaky-wave device can be used to rapidly track mobile clients by using
the received spectral signature64 to estimate the receiver’s relative
angle from the transmitter (see Fig. 6), a scheme which can be gen-
eralized to three-dimensional localization74. As another example, with

arrays of sub-wavelength elements, one can envision a centimeter-
scale surface with ~1000 independently controllable devices. This high
oversampling yields new possibilities for dual-purposing commu-
nication and sensing: not only could one realize classical commu-
nication capabilities (e.g., beamforming and nulling of interferers or
enhancing security), but one could also realize sensor functions (e.g.,
localization of users) with the same device75.

Likewise, beam steering must also incorporate cases in which a
direct line-of-sight path is not available. As discussed above, an IRS
could be used to realize a reflected path thereby increasing coverage
and avoiding blockage. However, building the device is not enough; in
order to function properly, the network’s control plane must discover
and configure this path, including properties of the IRS itself: for
example, if the IRSprovides a non-specular reflection, itmust know the
targeted incoming and outgoing angles. Since a networkmay alternate
serving users in time, the IRS would need to reconfigure not only due
to user mobility, but also according to which users are transmitting
and receiving. Beam steering devices must also consider the new
wavefronts described in Section 3. For example, in typical demon-
strations of beams such as OAM39, the transmitter, and receiver are
manually aligned and are typically placed broadside. To employ such
wavefronts in a mobile network will require adaptation not only for
location, but also for the relative orientations of the transmitter and
receiver when they are not ideally oriented.

As noted above, the aforementioned techniques basedon the idea
of an IRS have previouslybeen considered foruse at lower frequencies,
but their implementation takes on new urgency at these higher fre-
quencies. In addition, there are some approaches which have been
more widely employed at lower frequencies, and which can also offer
valuable capabilities in the THz range. One good illustration is the
assessment of angle-of-arrival for a mobile user via cooperative esti-
mation of spatial correlations amongmultiple antennas, for example in
a massive MIMO architecture. This possibility has recently been con-
sidered by Peng et al.76 in the context of a THz network. Such legacy
control-plane methods can play an important role, but will in general
need some rethinking in view of the highly directional nature of

Fig. 6 | CMOS leaky-wave emitter. An integrated circuit, fabricated in silicon
CMOS, which realizes a leaky-wave antenna for single-shot localization of multiple
users in a broadcast sector via broadband excitation of the angularly dispersive
aperture. Figure adapted from H. Saeidi, S. Venkatesh, X. Lu and K. Sengupta, "THz
Prism: One-Shot Simultaneous Localization ofMultipleWireless NodesWith Leaky-
Wave THz Antennas and Transceivers in CMOS," in IEEE Journal of Solid-State Cir-
cuits, vol. 56, no. 12, pp. 3840-3854, Dec. 2021, https://doi.org/10.1109/JSSC.2021.
3115407.with permissionof the authors under aCreativeCommons license: https://
creativecommons.org/licenses/by/4.0.

Fig. 5 | Metasurface-in-the-middle attack. A clever eavesdropper (Eve) can insert
an engineered reflector, such as a flexiblemetasurface (photo) into the line-of-sight
path between the transmitter (Alice) and the intended receiver (Bob), in order to
direct a portion of the spectrum towards the eavesdropper (upper schematic). This
low-profile attack would be difficult for Alice and Bob to detect, but would direct a
significant signal toward Eve (lower panel). Adapted from Zhambyl Shaikhanov,
Fahid Hassan, Hichem Guerboukha, Daniel Mittleman, and Edward Knightly. 2022.
Metasurface-in-the-middle attack: From Theory to Experiment. In Proceedings of
the 15th ACMConference on Security and Privacy inWireless andMobile Networks
(WiSec '22).© Association for Computing Machinery, New York, NY, USA, 257–267.
https://doi.org/10.1145/3507657.3528549.
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transmissions in these networks, as well as the possibility (discussed
above) that the user could be in the near field of the array.

Today’s wireless networks provide multi-user capabilities, in
which an access point or base station transmits to (or receives from)
multiple users simultaneously in order to increase aggregate data rate
and decrease latency. Realizing this capability with THz frequencies
will require two new advances. First, waveforms and modulation for-
mats must be designed to support simultaneous transmission, incor-
porating that users will not be co-located and will be using directional
transmissions. In some downlink cases, spatial separation of receivers
combinedwith narrowbeamsmayprovide a simple starting point. Yet,
for the uplink, and even for the downlink when users are close toge-
ther, interference and co-stream management must be carefully con-
trolled. Second, even if a network has the physical capability to realize
a multi-user transmission, control plane mechanisms are needed to
coordinate the transmission. Namely, the control plane must identify
and localize the users, determine the appropriate spectrum and
modulations to use, trigger the transmission at the correct time, and so
on. In some cases, these functions are sufficiently similar to those of
existing networks that comparable methods can be used; in other
cases, entirely new protocols will need to be developed. For example,
while traditionally medium access control protocols are driven by the
transmitter, an alternative procedure based on receiver-initiated link
synchronization, in which a receiver periodically polls potential
transmitters as its antenna sweeps / scans the space, can increase the
reliability and throughput and reduce latency77.

Outlook
Themany challenges discussed in this article have inspired a great deal
of research over the last few years (only a small fraction of which could
be included here). One challenge, not discussed above, involves the
potential interference of wireless signals at these frequencies with
existing (for the most part, passive) users involved in earth sensing or
radio astronomy. Numerous research communities employ highly
sensitive receivers to harvest information about the status of our
atmosphere and themolecular composition of astronomical objects. It
is critical that any active communication services that exploit fre-
quencies above 100GHz must be designed to avoid interference with
these important existing communities78. Of course, because of the
higher atmospheric attenuation and the high gain of transmitting
antennas, issues of sharing and interference may be quite different at
these high frequencies. More research is required, for example, to
establish the limits for interference, or to demonstrate antenna con-
figurations whose side lobes are designed to avoid interference with
overhead satellites.

Unsurprisingly, the daunting nature of the technical chal-
lenges has also inspired some skepticism from some researchers
in the field. A few have noted that R&D expenditures in THz
systems from many of the major telecommunications companies
remain only a small fraction of their total R&D budget. Of course,
this is not surprising, since the market for these systems also
remains tiny. At this juncture, one should not expect massive
private sector investment in a technology that is probably at least
a decade away. Another oft-stated concern relates to the need for
such systems. Twenty years ago, a common refrain was that
nobody would ever require frequency bands above 10 GHz for
consumer applications; ten years ago, it was 60 GHz; today, with
the emergence of the first commercial backhaul devices operating
in D band79, the threshold has now moved to 140 GHz. In fact, we
choose to regard this moving target as an optimistic indicator of
the rapid progress in the field. This progress is embodied in
exciting recent publications, including breakthrough new link
demonstrations80,81 and rapid advances in solid-state device
technology82–85.

Of course, there are valid reasons for concern; the challenges
discussed in this article are indeed formidable. Nevertheless, we feel
that the research results of the last few years have established that THz
technologies are a promising foundation for future needs in wireless
networks, which seem likely to exploit these frequencies for at least
some of their key functions86. While many open questions remain,
there is at this point a clear and compelling motivation to pursue the
goal of THz wireless.
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